18 Sep 2022
Planet Openmoko
Harald "LaF0rge" Welte: Deployment of future community TDMoIP hub
I've mentioned some of my various retronetworking projects in some past blog posts. One of those projects is Osmocom Community TDM over IP (OCTOI). During the past 5 or so months, we have been using a number of GPS-synchronized open source icE1usb interconnected by a new, efficient but strill transparent TDMoIP protocol in order to run a distributed TDM/PDH network. This network is currently only used to provide ISDN services to retronetworking enthusiasts, but other uses like frame relay have also been validated.
So far, the central hub of this OCTOI network has been operating in the basement of my home, behind a consumer-grade DOCSIS cable modem connection. Given that TDMoIP is relatively sensitive to packet loss, this has been sub-optimal.
Luckily some of my old friends at noris.net have agreed to host a new OCTOI hub free of charge in one of their ultra-reliable co-location data centres. I'm already hosting some other machines there for 20+ years, and noris.net is a good fit given that they were - in their early days as an ISP - the driving force in the early 90s behind one of the Linux kernel ISDN stracks called u-isdn. So after many decades, ISDN returns to them in a very different way.
Side note: In case you're curious, a reconstructed partial release history of the u-isdn code can be found on gitea.osmocom.org
But I digress. So today, there was the installation of this new OCTOI hub setup. It has been prepared for several weeks in advance, and the hub contains two circuit boards designed entirely only for this use case. The most difficult challenge was the fact that this data centre has no existing GPS RF distribution, and the roof is ~ 100m of CAT5 cable (no fiber!) away from the roof. So we faced the challenge of passing the 1PPS (1 pulse per second) signal reliably through several steps of lightning/over-voltage protection into the icE1usb whose internal GPS-DO serves as a grandmaster clock for the TDM network.
The equipment deployed in this installation currently contains:
-
a rather beefy Supermicro 2U server with EPYC 7113P CPU and 4x PCIe, two of which are populated with Digium TE820 cards resulting in a total of 16 E1 ports
-
an icE1usb with RS422 interface board connected via 100m RS422 to an Ericsson GPS03 receiver. There's two layers of of over-voltage protection on the RS422 (each with gas discharge tubes and TVS) and two stages of over-voltage protection in the coaxial cable between antenna and GPS receiver.
-
a Livingston Portmaster3 RAS server
-
a Cisco AS5400 RAS server
For more details, see this wiki page and this ticket
Now that the physical deployment has been made, the next steps will be to migrate all the TDMoIP links from the existing user base over to the new hub. We hope the reliability and performance will be much better than behind DOCSIS.
In any case, this new setup for sure has a lot of capacity to connect many more more users to this network. At this point we can still only offer E1 PRI interfaces. I expect that at some point during the coming winter the project for remote TDMoIP BRI (S/T, S0-Bus) connectivity will become available.
Acknowledgements
I'd like to thank anyone helping this effort, specifically * Sylvain "tnt" Munaut for his work on the RS422 interface board (+ gateware/firmware) * noris.net for sponsoring the co-location * sysmocom for sponsoring the EPYC server hardware
18 Sep 2022 10:00pm GMT
08 Sep 2022
Planet Openmoko
Harald "LaF0rge" Welte: Progress on the ITU-T V5 access network front
Almost one year after my post regarding first steps towards a V5 implementation, some friends and I were finally able to visit Wobcom, a small German city carrier and pick up a lot of decommissioned POTS/ISDN/PDH/SDH equipment, primarily V5 access networks.
This means that a number of retronetworking enthusiasts now have a chance to play with Siemens Fastlink, Nokia EKSOS and DeTeWe ALIAN access networks/multiplexers.
My primary interest is in Nokia EKSOS, which looks like an rather easy, low-complexity target. As one of the first steps, I took PCB photographs of the various modules/cards in the shelf, take note of the main chip designations and started to search for the related data sheets.
The results can be found in the Osmocom retronetworking wiki, with https://osmocom.org/projects/retronetworking/wiki/Nokia_EKSOS being the main entry page, and sub-pages about
In short: Unsurprisingly, a lot of Infineon analog and digital ICs for the POTS and ISDN ports, as well as a number of Motorola M68k based QUICC32 microprocessors and several unknown ASICs.
So with V5 hardware at my disposal, I've slowly re-started my efforts to implement the LE (local exchange) side of the V5 protocol stack, with the goal of eventually being able to interface those V5 AN with the Osmocom Community TDM over IP network. Once that is in place, we should also be able to offer real ISDN Uk0 (BRI) and POTS lines at retrocomputing events or hacker camps in the coming years.
08 Sep 2022 10:00pm GMT
Harald "LaF0rge" Welte: Clock sync trouble with Digium cards and timing cables
If you have ever worked with Digium (now part of Sangoma) digital telephony interface cards such as the TE110/410/420/820 (single to octal E1/T1/J1 PRI cards), you will probably have seen that they always have a timing connector, where the timing information can be passed from one card to another.
In PDH/ISDN (or even SDH) networks, it is very important to have a synchronized clock across the network. If the clocks are drifting, there will be underruns or overruns, with associated phase jumps that are particularly dangerous when analog modem calls are transported.
In traditional ISDN use cases, the clock is always provided by the network operator, and any customer/user side equipment is expected to synchronize to that clock.
So this Digium timing cable is needed in applications where you have more PRI lines than possible with one card, but only a subset of your lines (spans) are connected to the public operator. The timing cable should make sure that the clock received on one port from the public operator should be used as transmit bit-clock on all of the other ports, no matter on which card.
Unfortunately this decades-old Digium timing cable approach seems to suffer from some problems.
bursty bit clock changes until link is up
The first problem is that downstream port transmit bit clock was jumping around in bursts every two or so seconds. You can see an oscillogram of the E1 master signal (yellow) received by one TE820 card and the transmit of the slave ports on the other card at https://people.osmocom.org/laforge/photos/te820_timingcable_problem.mp4
As you can see, for some seconds the two clocks seem to be in perfect lock/sync, but in between there are periods of immense clock drift.
What I'd have expected is the behavior that can be seen at https://people.osmocom.org/laforge/photos/te820_notimingcable_loopback.mp4 - which shows a similar setup but without the use of a timing cable: Both the master clock input and the clock output were connected on the same TE820 card.
As I found out much later, this problem only occurs until any of the downstream/slave ports is fully OK/GREEN.
This is surprising, as any other E1 equipment I've seen always transmits at a constant bit clock irrespective whether there's any signal in the opposite direction, and irrespective of whether any other ports are up/aligned or not.
But ok, once you adjust your expectations to this Digium peculiarity, you can actually proceed.
clock drift between master and slave cards
Once any of the spans of a slave card on the timing bus are fully aligned, the transmit bit clocks of all of its ports appear to be in sync/lock - yay - but unfortunately only at the very first glance.
When looking at it for more than a few seconds, one can see a slow, continuous drift of the slave bit clocks compared to the master :(
Some initial measurements show that the clock of the slave card of the timing cable is drifting at about 12.5 ppb (parts per billion) when compared against the master clock reference.
This is rather disappointing, given that the whole point of a timing cable is to ensure you have one reference clock with all signals locked to it.
The work-around
If you are willing to sacrifice one port (span) of each card, you can work around that slow-clock-drift issue by connecting an external loopback cable. So the master card is configured to use the clock provided by the upstream provider. Its other ports (spans) will transmit at the exact recovered clock rate with no drift. You can use any of those ports to provide the clock reference to a port on the slave card using an external loopback cable.
In this setup, your slave card[s] will have perfect bit clock sync/lock.
Its just rather sad that you need to sacrifice ports just for achieving proper clock sync - something that the timing connectors and cables claim to do, but in reality don't achieve, at least not in my setup with the most modern and high-end octal-port PCIe cards (TE820).
08 Sep 2022 10:00pm GMT