21 Aug 2019

feedPlanet Lisp

Lispers.de: Berlin Lispers Meetup, Monday, 26th August 2019

We meet again on Monday 8pm, 26th August. Our host this time is James Anderson (www.dydra.com).

Berlin Lispers is about all flavors of Lisp including Clojure, Scheme and Common Lisp.

Willem Broekema will talk about his work-in-progress on "Developments in the AllegroGraph query engine".

We meet in the Taut-Haus at Engeldamm 70 in Berlin-Mitte, the bell is "James Anderson". It is located in 10min walking distance from U Moritzplatz or U Kottbusser Tor or Ostbahnhof. In case of questions call Christian +49 1578 70 51 61 4.

21 Aug 2019 8:00am GMT

20 Aug 2019

feedPlanet Lisp

Nicolas Hafner: The End of Daily Gamedev - Confession 87

header
It's been two months now since I started to do daily game development streams. I've been trying my best, but it is time for this to come to a close. In this article I'll talk about the various things that happened, why I'm stopping, and the future of the Leaf game. Strap in!

It's actually been slightly longer than two months, but since I missed some days due to being sick, and some others because I didn't feel like streaming - more on that later - I'll just count it as two months. In any case, in this time I've done 56 streams, almost all of them two hours long. That's a lot of hours, and I'm truly impressed that some people stuck around for almost all of them. Thank you very much! A lot happened in that time too, and I think it would be interesting to go over some of the major features and talk about them briefly.

New Features in Leaf

Slopes and Collision

Collision detection was heavily revised from the previous version. The general procedure is to scan the current chunk for hits until there are no more hits to be found. If we have more than ten hits we assume that the player is in a wall somehow and just die. The number ten is obviously arbitrary, but somehow it seems sufficient and I haven't had any accidental deaths yet.

When a hit is detected, it dispatches on the type of tile or entity that was collided with. It does so in two steps, the first is a test whether the collision will happen at all, to allow sub-tile precision, and the second is the actual collision resolution, should a full hit have been detected. The first test can be used to elide collisions with jump-through platforms or slopes if the player moves above the actual slope surface. The actual collision resolution is typically comprised of moving the player to the collision point, updating velocity along the hit normal, and finally zipping out of the ground if necessary to avoid floating point precision issues.

The collision detection of the slopes itself is surprisingly simple and works on the same principle as swept AABB tests: we can enlarge the slope triangle by simply moving the line towards the player by the player's half-size. Once this shift is done we only need to do a ray-line collision test. During resolution there's some slight physics cheating going on to make the player stick to the ground when going down a slope, rather than flying off, but that's it.

Packets and File Formats

Leaf defines a multitude of file formats. These formats are typically all defined around the idea of a packet - a collection of files in a directory hierarchy. The idea of a packet allows me to define these formats as both directly on disk, in-memory as some data structure, or encapsulated within an archive. The packet protocol isn't that complicated and I intend on either at least putting it into Trial, or putting it into its own library altogether. Either way, it allows the transparent implementation of these formats regardless of backing storage.

The actual formats themselves also follow a very similar file structure: a meta.lisp file for a brief metadata header, which identifies the format, the version, and some authoring metadata fields. This file is in typical s-expression form and can be used to create a version object, which controls the loading and writing process of the rest of the format. In the current v0, this usually means an extra data.lisp payload file, and a number of other associated payload files like texture images.

The beauty of using generic functions with methods that specialise both on the version and object at the same time is that it allows me to define new versions in terms of select overrides, so that I can specify new behaviour for select classes, rather than having to redo the entire de/serialisation process, or breaking compatibility altogether.

Dialogue and Quests

The dialogue and quests are implemented as very generic systems that should have the flexibility (I hope) to deal with all the story needs I might have in the future. Dialogue is written in an extended dialect of Markless. For instance, the following is a valid dialogue snippet:

~ Fi
| (:happy) Well isn't this a sight for sore eyes!
| Finally a bit of sunshine!

- I don't like rain
  ~ Player
  | I don't mind the rain, actually.
  | Makes it easier to think.
- Yeah!
  ~ Player
  | Yeah, it's been too long! Hopefully this isn't announcing the coming of a sandstorm.
  ! incf (favour 'fi)
- ...
  ! decf (favour 'fi)

~ Fi
| ? (< 3 (favour 'fi))
| | So, what's our next move?
| |?
| | Alright, good luck out there!

The list is translated into a choice for the player to make, which can impact the dialogue later. The way this is implemented is through a syntax extension in the cl-markless parser, followed by a compiler from the Markless AST to an assembly language, and a virtual machine to execute the assembly. The user of the dialogue system only needs to implement the evaluation of commands, the display of text, and the presentation of choices.

The quest system on the other hand is based on node graphs. Each quest is represented as a directed graph of task nodes, each describing a task the player must fulfil through an invariant and a success condition. On success, one or more successor tasks can be unlocked. Tasks can also spawn dialogue pieces to become available as interactions with NPCs or items. The system is smart enough to allow different, competing branches, as well as parallel branches to complete a quest. I intend on building a graph editor UI for this once Alloy is further along.

Both of these systems are, again, detached enough that I'll either put them into Trial, or put them into a completely separate library altogether. I'm sure I'll need to adjust things once I actually have some written story on hand to use these systems with.

Platforming AI

The platforming AI allows characters to move along the terrain just like the player would. This is extremely useful for story reasons, so that characters can naturally move to select points, or idle around places rather than just standing still. The way this is implemented is through a node graph that describes the possible movement options from one valid position to the next. This graph is built through a number of scanline passes over the tile map that either add new nodes or connect existing nodes together in new ways.

The result is a graph with nodes that can connect through walk, crawl, fall, or jump edges. A character can be moved along this graph by first running A* to find a shortest path to the target node, and then performing a real-time movement through the calculated path. Generally the idea is to always move the player in the direction of the next target node until that node has been reached, in which case it's popped off the path. The jump edges already encode the necessary jump parameters to use, so when reaching a jump node the character just needs to assume the initial velocity and let standard physics do the rest.

The implementation includes a simple visualiser so that you can see how characters would move across the chunk terrain. When the chunk terrain changes, the node graph is currently just recomputed from scratch which isn't fast, but then again during gameplay the chunk isn't going to change anyway so it's only really annoying during editing. I'll think about whether I want to implement incremental updates.

Lighting

Leaf has gone through two lighting systems. The old one worked through signed distance fields that were implicitly computed through a light description. New light types required new shader code to evaluate the SDF, and each light required many operations in the fragment stage, which is costly.

The new system uses two passes, in the first lights are rendered to a separate buffer. The lights are rendered like regular geometry, so we can use discrete polygons to define light areas, and use other fancy tricks like textured lights. In the second pass the fragment shader simply looks up the current fragment position in the light texture and mixes the colours together.

In effect this new system is easier to implement, more expressive, and much faster to run. Overall it's a massive win in almost every way I can imagine. There's further improvements I want to make still, such as shadow casting, dynamic daylights, and light absorption mapping to allow the light to dissipate into the ground gradually.

Alloy

Alloy is a new user interface toolkit that I've been working on as part of Leaf's development. I've been in need for a good UI toolkit that I can use within GL (and otherwise) for a while, and a lot of Leaf's features had to be stalled because I didn't have one yet. However, a lot of Alloy's development is also only very distantly related to game development itself, and hardly at all related to the game itself. Thus I think I'll talk more about Alloy in other articles sometime.

Why I'm Stopping

I initially started this daily stuff to get myself out of a rut. At the time I wasn't doing much at all, and that bothered me a lot, so committing to a daily endeavour seemed like a good way to kick myself out of it. And it was! For a long time it worked really well. I enjoyed the streams and made good progress with the game.

Unfortunately I have the tendency to turn things like this into enormous burdens for myself. The stream turned from something I wanted to do into something I felt I had to do, and then ultimately into something I dreaded doing. This has happened before with all of my projects, especially streaming ones. With streams I quickly feel a lot of pressure because I get the idea that people aren't enjoying the content, that it's just a boring waste of time. Maybe it is, or maybe it isn't, I don't know. Either way, having to worry about the viewers and not just the project I'm working on, especially trying to constrain tasks to interesting little features that can fit into two hours turns into a big constraint that I can't keep up anymore.

There's a lot of interesting work left to be done, sure, but I just can't bear things anymore at the moment. Dreading the stream poisoned a lot of the rest of my days and ultimately started to hurt my productivity and well-being over the past two weeks. Maybe I'll do more streams again at some point in the future, but for now I need a break for an indeterminate amount of time.

The Future of Leaf

Leaf isn't dead, though. I intend to keep working on it on my own, and I really do want to see it finished one day, however far away that day may be. Currently I feel like I need to focus on writing, which is a big challenge for me. I'm a very, very inexperienced writer, especially when it comes to long-form stories and world-building. There I have practically no idea on how to do anything. If you are a writer, or are interested in talking shop about stories, please contact me.

Other than writing I'm probably going to mostly work on Alloy in the immediate future. I hope to have a better idea of the writing once I'm done, and that should give rise to more features to implement in Leaf directly. I'll try to keep posting updates on the blog here as things progress in any case, and there's a few systems I'd like to elaborate on in technical articles as well.

Thanks to everyone who read my summaries, watched the streams or recordings, and chatted live during this time. It means a lot to me to see people genuinely interested in what I do.

20 Aug 2019 10:32am GMT

19 Aug 2019

feedPlanet Lisp

Vsevolod Dyomkin: Programming Algorithms: Linked Lists

Linked data structures are in many ways the opposite of the contiguous ones that we have explored to some extent in the previous chapter using the example of arrays. In terms of complexity, they fail where those ones shine (first of all, at random access) - but prevail at scenarios when a repeated modification is necessary. In general, they are much more flexible and so allow the programmer to represent almost any kind of a data structure, although the ones that require such level of flexibility may not be too frequent. Usually, they are specialized trees or graphs.

The basic linked data structure is a singly-linked list.

Just like arrays, lists in Lisp may be created both with a literal syntax for constants and by calling a function - make-list - that creates a list of a certain size filled with nil elements. Besides, there's a handy list utility that is used to create lists with the specified content (the analog of vec).

CL-USER> '("hello" world 111)
("hello" WORLD 111)
CL-USER> (make-list 3)
(NIL NIL NIL)
CL-USER> (list "hello" 'world 111)
("hello" WORLD 111)

An empty list is represented as () and, interestingly, in Lisp, it is also a synonym of logical falsehood (nil). This property is used very often, and we'll have a chance to see that.

If we were to introduce our own lists, which may be quite a common scenario in case the built-in ones' capabilities do not suit us, we'd need to define the structure "node", and our list would be built as a chain of such nodes. We might have wanted to store the list head and, possibly, tail, as well as other properties like size. All in all, it would look like the following:

(defstruct list-cell
data
next)

(defstruct our-own-list
(head nil :type (or list-cell null))
(tail nil :type (or list-cell null)))

CL-USER> (let ((tail (make-list-cell :data "world")))
(make-our-own-list
:head (make-list-cell
:data "hello"
:next tail)
:tail tail))
#S(OUR-OWN-LIST
:HEAD #S(LIST-CELL
:DATA "hello"
:NEXT #S(LIST-CELL :DATA "world" :NEXT NIL))
:TAIL #S(LIST-CELL :DATA "world" :NEXT NIL))

Lists as Sequences

Alongside arrays, list is the other basic data structure that implements the sequence abstract data type. Let's consider the complexity of basic sequence operations for linked lists:

Getting the list length, in the basic case, is also O(n) i.e. it requires full list traversal. It is possible, though, to store list length as a separate slot, tracking each change on the fly, which means O(1) complexity. Lisp, however, implements the simplest variant of lists without size tracking. This is an example of a small but important decision that real-world programming is full of. Why is such a solution the right thing™, in this case? Adding the size counter to each list would have certainly made this common length operation more effective, but the cost of doing that would've included: increase in occupied storage space for all lists, a need to update size in all list modification operations, and, possibly, a need for a more complex cons cell implementation[1]. These considerations make the situation with lists almost opposite to arrays, for which size tracking is quite reasonable because they change much less often and not tracking the length historically proved to be a terrible security decision. So, what side to choose? A default approach is to prefer the solution which doesn't completely rule out the alternative strategy. If we were to choose a simple cons-cell sans size (what the authors of Lisp did) we'll always be able to add the "smart" list data structure with the size field, on top of it. Yet, stripping the size field from built-in lists won't be possible. Similar reasoning is also applicable to other questions, such as: why aren't lists, in Lisp, doubly-linked. Also, it helps that there's no security implication as lists aren't used as data exchange buffers, for which the problem manifests itself.

For demonstration, let's add the size field to our-own-list (and, meanwhile, consider all the functions that will need to update it...):

(defstruct our-own-list
(head nil :type (or list-cell nil))
(tail nil :type (or list-cell nil))
(size 0 :type (integer 0)))

Given that obtaining the length of a list, in Lisp, is an expensive operation, a common pattern in programs that require multiple requests of the length field is to store its value in some variable at the beginning of the algorithm and then use this cached value, updating it if necessary.

As we see, lists are quite inefficient in random access scenarios. However, many sequences don't require random access and can satisfy all the requirements of a particular use case using just the sequential one. That's one of the reasons why they are called sequences, after all. And if we consider the special case of list operations at index 0 they are, obviously, efficient: both access and addition/removal is O(1). Also, if the algorithm requires a sequential scan, list traversal is rather efficient too, although not as good as array traversal for it still requires jumping over the memory pointers. There are numerous sequence operations that are based on sequential scans. The most common is map, which we analyzed in the previous chapter. It is the functional programming alternative to looping, a more high-level operation, and thus simpler to understand for the common cases, although less versatile.

map is a function that works with different types of built-in sequences. It takes as the first argument the target sequence type (if nil is supplied it won't create the resulting sequence and so will be used just for side-effects). Here is a polymorphic example involving lists and vectors:

CL-USER> (map 'vector '+
'(1 2 3 4 5)
#(1 2 3))
#(2 4 6)

map applies the function provided as its second argument (here, addition) sequentially to every element of the sequences that are supplied as other arguments, until one of them ends, and records the result in the output sequence. map would have been even more intuitive, if it just had used the type of the first argument for the result sequence, i.e. be a "do what I mean" dwim-map, while a separate advanced variant with result-type selection might have been used in the background. Unfortunately, the current standard scheme is not for change, but we can define our own wrapper function:

(defun dwim-map (fn seq &rest seqs)
"A thin wrapper over MAP that uses the first SEQ's type for the result."
(apply 'map (type-of seq) fn seqs))

map in Lisp is, historically, used for lists. So there's also a number of list-specific map variants that predated the generic map, in the earlier versions of the language, and are still in wide use today. These include mapcar, mapc, and mapcan (replaced in RUTILS by a safer flat-map). Now, let's see a couple of examples of using mapping. Suppose that we'd like to extract odd numbers from a list of numbers. Using mapcar as a list-specific map we might try to call it with an anonymous function that tests its argument for oddity and keeps them in such case:

CL-USER> (mapcar (lambda (x) (when (oddp x) x))
(range 1 10))
(1 NIL 3 NIL 5 NIL 7 NIL 9)

However, the problem is that non-odd numbers still have their place reserved in the result list, although it is not filled by them. Keeping only the results that satisfy (or don't) certain criteria and discarding the others is a very common pattern that is known as "filtering". There's a set of Lisp functions for such scenarios: remove, remove-if, and remove-if-not, as well as RUTILS' complements to them keep-if and keep-if-not. We can achieve the desired result adding remove to the picture:

CL-USER> (remove nil (mapcar (lambda (x) (when (oddp x) x))
(range 1 10)))
(1 3 5 7 9)

A more elegant solution will use the remove-if(-not) or keep-if(-not) variants. remove-if-not is the most popular among these functions. It takes a predicate and a sequence and returns the sequence of the same type holding only the elements that satisfy the predicate:

CL-USER> (remove-if-not 'oddp (range 1 10))
(1 3 5 7 9)

Using such high-level mapping functions is very convenient, which is why there's a number of other -if(-not) operations, like find(-if(-not)), member(-if(-not)), position(-if(-not)), etc.

The implementation of mapcar or any other list mapping function, including your own task-specific variants, follows the same pattern of traversing the list accumulating the result into another list and reversing it, in the end:

(defun simple-mapcar (fn list)
(let ((rez ()))
(dolist (item list)
(:= rez (cons (call fn item) rez)))
(reverse rez)))

The function cons is used to add an item to the beginning of the list. It creates a new list head that points to the previous list as its tail.

From the complexity point of view, if we compare such iteration with looping over an array we'll see that it is also a linear traversal that requires twice as many operations as with arrays because we need to traverse the result fully once again, in the end, to reverse it. Its advantage, though, is higher versatility: if we don't know the size of the resulting sequence (for example, in the case of remove-if-not) we don't have to change anything in this scheme and just add a filter line ((when (oddp item) ...), while for arrays we'd either need to use a dynamic array (that will need constant resizing and so have at least the same double number of operations) or pre-allocate the full-sized result sequence and then downsize it to fit the actual accumulated number of elements, which may be problematic when we deal with large arrays.

Lists as Functional Data Structures

The distinction between arrays and linked lists in many ways reflects the distinction between the imperative and functional programming paradigms. Within the imperative or, in this context, procedural approach, the program is built out of low-level blocks (conditionals, loops, and sequentials) that allow for the most fine-tuned and efficient implementation, at the expense of abstraction level and modularization capabilities. It also heavily utilizes in-place modification and manual resource management to keep overhead at a minimum. An array is the most suitable data-structure for such a way of programming. Functional programming, on the contrary, strives to bring the abstraction level higher, which may come at a cost of sacrificing efficiency (only when necessary, and, ideally, only for non-critical parts). Functional programs are built by combining referentially transparent computational procedures (aka "pure functions") that operate on more advanced data structures (either persistent ones or having special access semantics, e.g. transactional) that are also more expensive to manage but provide additional benefits.

Singly-linked lists are a simple example of functional data structures. A functional or persistent data structure is the one that doesn't allow in-place modification. In other words, to alter the contents of the structure a fresh copy with the desired changes should be created. The flexibility of linked data structures makes them suitable for serving as functional ones. We have seen the cons operation that is one of the earliest examples of non-destructive, i.e. functional, modification. This action prepends an element to the head of a list, and as we're dealing with the singly-linked list the original doesn't have to be updated: a new cons cell is added in front of it with its next pointer referencing the original list that becomes the new tail. This way, we can preserve both the pointer to the original head and add a new head. Such an approach is the basis for most of the functional data structures: the functional trees, for example, add a new head and a new route from the head to the newly added element, adding new nodes along the way - according to the same principle.

It is interesting, though, that lists can be used in destructive and non-destructive fashion likewise. There are both low- and high-level functions in Lisp that perform list modification, and their existence is justified by the use cases in many algorithms. Purely functional lists render many of the efficient list algorithms useless. One of the high-level list modification function is nconc. It concatenates two lists together updating in the process the next pointer of the last cons cell of the first list:

CL-USER> (let ((l1 (list 1 2 3))
(l2 (list 4 5 6)))
(nconc l1 l2) ; note no assignment to l1
l1) ; but it is still changed
(1 2 3 4 5 6)

There's a functional variant of this operation, append, and, in general, it is considered distasteful to use nconc for two reasons:

So, forget nconc, append all the lists!

Using append we'll need to modify the previous piece of code because otherwise the newly created list will be garbage-collected immediately:

CL-USER> (let ((l1 (list 1 2 3))
(l2 (list 4 5 6)))
(:= l1 (append l1 l2))
l1)
(1 2 3 4 5 6)

The low-level list modification operations are rplaca and rplacd. They can be combined with list-specific accessors nth and nthcdr that provide indexed access to list elements and tails respectively. Here's, for example, how to add an element in the middle of a list:

CL-USER> (let ((l1 (list 1 2 3)))
(rplacd (nthcdr 0 l1)
(cons 4 (nthcdr 1 l1)))
l1)
(1 4 2 3)

Just to re-iterate, although functional list operations are the default choice, for efficient implementation of some algorithms, you'll need to resort to the ugly destructive ones.

Different Kinds of Lists

We have, thus far, seen the most basic linked list variant - a singly-linked one. It has a number of limitations: for instance, it's impossible to traverse it from the end to the beginning. Yet, there are many algorithms that require accessing the list from both sides or do other things with it that are inefficient or even impossible with the singly-linked one, hence other, more advanced, list variants exist.

But first, let's consider an interesting tweak to the regular singly-linked list - a circular list. It can be created from the normal one by making the last cons cell point to the first. It may seem like a problematic data structure to work with, but all the potential issues with infinite looping while traversing it are solved if we keep a pointer to any node and stop iteration when we encounter this node for the second time. What's the use for such structure? Well, not so many, but there's a prominent one: the ring buffer. A ring or circular buffer is a structure that can hold a predefined number of items and each item is added to the next slot of the current item. This way, when the buffer is completely filled it will wrap around to the first element, which will be overwritten at the next modification. By our buffer-filling algorithm, the element to be overwritten is the one that was written the earliest for the current item set. Using a circular linked list is one of the simplest ways to implement such a buffer. Another approach would be to use an array of a certain size moving the pointer to the next item by incrementing an index into the array. Obviously, when the index reaches array size it should be reset to zero.

A more advanced list variant is a doubly-linked one, in which all the elements have both the next and previous pointers. The following definition, using inheritance, extends our original list-cell with a pointer to the previous element. Thanks to the basic object-oriented capabilities of structs, it will work with the current definition of our-own-list as well, and allow it to function as a doubly-linked list.

(defstruct (list-cell2 (:include list-cell))
prev)

Yet, we still haven't shown the implementation of the higher-level operations of adding and removing an element to/from our-own-list. Obviously, they will differ for singly- and doubly-linked lists, and that distinction will require us to differentiate the doubly-linked list types. That, in turn, will demand invocation of a rather heavy OO-machinery, which is beyond the subject of this book. Instead, for now, let's just examine the basic list addition function, for the doubly-linked list:

(defun our-cons2 (data list)
(when (null list) (:= list (make-our-own-list)))
(let ((new-head (make-list-cell2
:data data
:next (when list @list.head))))
(:= @list.head.prev new-head)
(make-our-own-list
:head new-head
:tail @list.tail
:size (1+ @list.size))))

The first thing to note is the use of the @ syntactic sugar, from RUTILS, that implements the mainstream dot notation for slot-value access (i.e. @list.head.prev refers to the prev field of the head field of the provided list structure of the assumed our-own-list type, which in a more classically Lispy, although cumbersome, variants may look like one of the following: (our-cons2-prev (our-own-list-head list)) or (slot-value (slot-value list 'head) 'prev)[2]).

More important here is that, unlike for the singly-linked list, this function requires an in-place modification of the head element of the original list: setting its prev pointer. Immediately making doubly-linked lists non-persistent.

Finally, the first line is the protection against trying to access the null list (that will result in a much-feared, especially in Java-land, null-pointer exception class of error).

At first sight, it may seem that doubly-linked lists are more useful than singly-linked ones. But they also have higher overhead so, in practice, they are used quite sporadically. We may see just a couple of use cases on the pages of this book. One of them is presented in the next part - a double-ended queue.

Besides doubly-linked, there are also association lists that serve as a variant of key-value data structures. At least 3 types may be found in Common Lisp code, and we'll briefly discuss them in the chapter on key-value structures. Finally, a skip list is a probabilistic data structure based on singly-linked lists, that allows for faster search, which we'll also discuss in a separate chapter on probabilistic structures. Other more esoteric list variants, such as self-organized list and XOR-list, may also be found in the literature - but very rarely, in practice.

FIFO & LIFO

The flexibility of lists allows them to serve as a common choice for implementing a number of popular abstract data structures.

Queue

A queue or FIFO has the following interface:

It imposes a first-in-first-out (FIFO) ordering on the elements. A queue can be implemented directly with a singly-linked list like our-own-list. Obviously, it can also be built on top of a dynamic array but will require permanent expansion and contraction of the collection, which, as we already know, isn't the preferred scenario for their usage.

There are numerous uses for the queue structures for processing items in a certain order (some of which we'll see in further chapters of this book).

Stack

A stack or LIFO (last-in-first-out) is even simpler than a queue, and it is used even more widely. Its interface is:

A simple Lisp list can serve as a stack, and you can see such uses in almost every file with Lisp code. The most common pattern is result accumulation during iteration: using the stack interface, we can rewrite simple-mapcar in an even simpler way (which is idiomatic Lisp):

(defun simple-mapcar (fn list)
(let ((rez ()))
(dolist (item list)
(push (call fn item) rez))
(reverse rez)))

Stacks hold elements in reverse-chronological order and can thus be used to keep the history of changes to be able to undo them. This feature is used in procedure calling conventions by the compilers: there exists a separate segment of program memory called the Stack segment, and when a function call happens (beginning from the program's entry point called the main function in C) all of its arguments and local variables are put on this stack as well as the return address in the program code segment where the call was initiated. Such an approach allows for the existence of local variables that last only for the duration of the call and are referenced relative to the current stack head and not bound to some absolute position in memory like the global ones. After the procedure call returns, the stack is "unwound" and all the local data is forgotten returning the context to the same state in which it was before the call. Such stack-based history-keeping is a very common and useful pattern that may be utilized in userland code likewise.

Lisp itself also uses this trick to implement global variables with a capability to have context-dependent values through the extent of let blocks: each such variable also has a stack of values associated with it. This is one of the most underappreciated features of the Lisp language used quite often by experienced lispers. Here is a small example with a standard global variable (they are called special in Lisp parlance due to this special property) *standard-output* that stores a reference to the current output stream:

CL-USER> (print 1)
1
1
CL-USER> (let ((*standard-output* (make-broadcast-stream)))
(print 1))
1

In the first call to print, we see both the printed value and the returned one, while in the second - only the return value of the print function, while it's output is sent, effectively, to /dev/null.

Stacks can be also used to implement queues. We'll need two of them to do that: one will be used for enqueuing the items and another - for dequeuing. Here's the implementation:

(defstruct queue
head
tail)

(defun enqueue (item queue)
(push item @queue.head))

(defun dequeue (queue)
;; Here and in the next condition, we use the property that an empty list
;; is also logically false. This is discouraged by many Lisp style-guides,
;; but, in many cases, such code is not only more compact but also more clear.
(unless @queue.tail
(do ()
((null @queue.head)) ; this loop continues until head becomes empty
(push (pop @queue.head) @queue.tail)))
;; By pushing all the items from the head to the tail we reverse
;; their order - this is the second reversing that cancels the reversing
;; performed when we push the items to the head and it restores the original order.
(when @queue.tail
(values (pop @queue.tail)
t))) ; this second value is used to indicate that the queue was not empty

CL-USER> (let ((q (make-queue)))
(print q)
(enqueue 1 q)
(enqueue 2 q)
(enqueue 3 q)
(print q)
(print q)
(dequeue q)
(print q)
(enqueue 4 q)
(print q)
(dequeue q)
(print q)
(dequeue q)
(print q)
(dequeue q)
(print q)
(dequeue q))
#S(QUEUE :HEAD NIL :TAIL NIL)
#S(QUEUE :HEAD (3 2 1) :TAIL NIL)
#S(QUEUE :HEAD (3 2 1) :TAIL NIL)
#S(QUEUE :HEAD NIL :TAIL (2 3))
#S(QUEUE :HEAD (4) :TAIL (2 3))
#S(QUEUE :HEAD (4) :TAIL (3))
#S(QUEUE :HEAD (4) :TAIL NIL)
#S(QUEUE :HEAD NIL :TAIL NIL)
NIL ; no second value indicates that the queue is now empty

Such queue implementation still has O(1) operation times for enqueue/dequeue. Each element will experience exactly 4 operations: 2 pushs and 2 pops (for the head and tail).

Another stack-based structure is the stack with a minimum element, i.e. some structure that not only holds elements in LIFO order but also keeps track of the minimum among them. The challenge is that if we just add the min slot that holds the current minimum, when this minimum is popped out of the stack we'll need to examine all the remaining elements to find the new minimum. We can avoid this additional work by adding another stack - a stack of minimums. Now, each push and pop operation requires us to also check the head of this second stack and, in case the added/removed element is the minimum, push it to the stack of minimums or pop it from there, accordingly.

A well-known algorithm that illustrates stack usage is fully-parenthesized arithmetic expressions evaluation:

(defun arith-eval (expr)
"EXPR is a list of symbols that may include:
square brackets, arithmetic operations, and numbers."
(let ((ops ())
(vals ())
(op nil))
(dolist (item expr)
(case item
([ ) ; do nothing
((+ - * /) (push item ops))
(] (:= op (pop ops)
val (pop vals))
(case op
(+ (:+ val (pop vals)))
(- (:- val (pop vals)))
(* (:* val (pop vals)))
(/ (:/ val (pop vals))))
(push val vals))
(otherwise (push item vals))))
(pop vals)))

CL-USER> (arith-eval '([ 1 + [ [ 2 + 3 ] * [ 4 * 5 ] ] ] ]))
101

Deque

A deque is a short name for a double-ended queue, which can be traversed in both orders: FIFO and LIFO. It has 4 operations: push-front and push-back (also called shift), pop-front and pop-back (unshift). This structure may be implemented with a doubly-linked list or likewise a simple queue with 2 stacks. The difference for the 2-stacks implementation is that now items may be pushed back and forth between head and tail depending on the direction we're popping from, which results in worst-case linear complexity of such operations: when there's constant alteration of front and back directions.

The use case for such structure is the algorithm that utilizes both direct and reverse ordering: a classic example being job-stealing algorithms, when the main worker is processing the queue from the front, while other workers, when idle, may steal the lowest priority items from the back (to minimize the chance of a conflict for the same job).

Stacks in Action: SAX Parsing

Custom XML parsing is a common task for those who deal with different datasets, as many of them come in XML form, for example, Wikipedia and other Wikidata resources. There are two main approaches to XML parsing:

Once you get used to SAX parsing, due to its simplicity, it becomes a tool of choice for processing XML, as well as JSON and other formats that allow for a similar stream parsing approach. Often the simplest parsing pattern is enough: remember the tag we're looking at, and when it matches a set of interesting tags, process its contents. However, sometimes, we need to make decisions based on the broader context. For example, let's say, we have the text marked up into paragraphs, which are split into sentences, which are, in turn, tokenized. To process such a three-level structure, with SAX parsing, we could use the following outline (utilizing CXML library primitives):

(defclass text-sax (sax:sax-parser-mixin)
((parags :initform nil :accessor sax-parags)
(parag :initform nil :accessor sax-parag)
(sent :initform nil :accessor sax-sent)
(tag :initform nil :accessor sax-tag)))

(defmethod sax:start-element ((sax text-sax)
namespace-uri local-name qname attrs)
(declare (ignore namespace-uri qname attrs))
(:= (sax-tag sax) (mkeyw local-name))

(defmethod sax:end-element ((sax text-sax)
namespace-uri local-name qname)
(declare (ignore namespace-uri qname))
(with-slots (tag parags sent) sax
(case tag
(:paragraph (push (reverse parag) parags)
(:= parag nil))
(:sentence (push (reverse sent) parag)
(:= sent nil)))))

(defmethod sax:characters ((sax text-sax) text)
(when (eql :token (sax-tag sax))
(push text (sax-sent sax)))

(defmethod sax:end-document ((sax text-sax))
(reverse (sax-parags sax)))

This code will return the accumulated structure of paragraphs from the sax:end-document method. And two stacks: the current sentence and the current paragraph are used to accumulate intermediate data while parsing. In a similar fashion, another stack of encountered tags might have been used to exactly track our position in the document tree if there were such necessity. Overall, the more you'll be using SAX parsing, the more you'll realize that stacks are enough to address 99% of the arising challenges.

Lists as Sets

Another very important abstract data structure is a Set. It is a collection that holds each element only once no matter how many times we add it there. This structure may be used in a variety of cases: when we need to track the items we have already seen and processed, when we want to calculate some relations between groups of elements,s and so forth.

Basically, its interface consists of set-theoretic operations:

Sets have an interesting aspect that an efficient implementation of element-wise operations (add/remove/member) and set-wise (union/...) require the use of different concrete data-structures, so a choice should be made depending on the main use case. One way to implement sets is by using linked lists. Lisp has standard library support for this with the following functions:

This approach works well for small sets (up to tens of elements), but it is rather inefficient, in general. Adding an item to the set or checking for membership will require O(n) operations, while, in the hash-set (that we'll discuss in the chapter on key-value structures), these are O(1) operations. A naive implementation of union and other set-theoretic operations will require O(n^2) as we'll have to compare each element from one set with each one from the other. However, if our set lists are in sorted order set-theoretic operations can be implemented efficiently in just O(n) where n is the total number of elements in all sets, by performing a single linear scan over each set in parallel. Using a hash-set will also result in the same complexity.

Here is a simplified implementation of union for sets of numbers built on sorted lists:

(defun sorted-union (s1 s2)
(let ((rez ()))
(do ()
((and (null s1) (null s2)))
(let ((i1 (first s1))
(i2 (first s2)))
(cond ((null i1) (dolist (i2 s2)
(push i2 rez))
(return))
((null i2) (dolist (i1 s1)
(push i1 rez))
(return))
((= i1 i2) (push i1 rez)
(:= s1 (rest s1)
s2 (rest s2)))
((< i1 i2) (push i1 rez)
(:= s1 (rest s1)))
;; just T may be used instead
;; of the following condition
((> i1 i2) (push i2 rez)
(:= s2 (rest s2))))))
(reverse rez)))

CL-USER> (sorted-union '(1 2 3)
'(0 1 5 6))
(0 1 2 3 5 6)

This approach may be useful even for unsorted list-based sets as sorting is a merely O(n * log n) operation. Even better though, when the use case requires primarily set-theoretic operations on our sets and the number of changes/membership queries is comparatively low, the most efficient technique may be to keep the lists sorted at all times.

Merge Sort

Speaking about sorting, the algorithms we discussed for array sorting in the previous chapter do not work as efficient for lists for they are based on swap operations, which are O(n), in the list case. Thus, another approach is required, and there exist a number of efficient list sorting algorithms, the most prominent of which is Merge sort. It works by splitting the list into two equal parts until we get to trivial one-element lists and then merging the sorted lists into the bigger sorted ones. The merging procedure for sorted lists is efficient as we've seen in the previous example. A nice feature of such an approach is its stability, i.e. preservation of the original order of the equal elements, given the proper implementation of the merge procedure.

(defun merge-sort (list comp)
(if (null (rest list))
list
(let ((half (floor (length list) 2)))
(merge-lists (merge-sort (subseq seq 0 half) comp)
(merge-sort (subseq seq half) comp)
comp))))

(defun merge-lists (l1 l2 comp)
(let ((rez ())
(do ()
((and (null l1) (null l2)))
(let ((i1 (first l1))
(i2 (first l2)))
(cond ((null i1) (dolist (i l2)
(push i rez))
(return))
((null i2) (dolist (i l1)
(push i rez))
(return))
((call comp i1 i2) (push i1 rez)
(:= l1 (rest l1)))
(t (push i2 rez)
(:= l2 (rest l2))))))
(reverse rez)))

The same complexity analysis as for binary search applies to this algorithm. At each level of the recursion tree, we perform O(n) operations: each element is pushed into the resulting list once, reversed once, and there are at most 4 comparison operations: 3 null checks and 1 call of the comp function. We also need to perform one copy per element in the subseq operation and take the length of the list (although it can be memorized and passed down as the function call argument) on the recursive descent. This totals to not more than 10 operations per element, which is a constant. And the height of the tree is, as we already know, (log n 2). So, the total complexity is O(n * log n).

Let's now measure the real time needed for such sorting, and let's compare it to the time of prod-sort (with optimal array accessors) from the Arrays chapter:

CL-USER> (with ((lst (random-list 10000))
(vec (make-array 10000 :initial-contents lst)))
(print-sort-timings "Prod" 'prod-sort vec)
(print-sort-timings "Merge " 'merge-sort lst))
= Prodsort of random vector =
Evaluation took:
0.048 seconds of real time
= Prodsort of sorted vector =
Evaluation took:
0.032 seconds of real time
= Prodsort of reverse sorted vector =
Evaluation took:
0.044 seconds of real time
= Merge sort of random vector =
Evaluation took:
0.007 seconds of real time
= Merge sort of sorted vector =
Evaluation took:
0.007 seconds of real time
= Merge sort of reverse sorted vector =
Evaluation took:
0.008 seconds of real time

Interestingly enough, Merge sort turned out to be around 5 times faster, although it seems that the number of operations required at each level of recursion is at least 2-3 times bigger than for quicksort. Why we got such result is left as an exercise to the reader: I'd start from profiling the function calls and looking where most of the time is wasted...

It should be apparent that the merge-lists procedure works in a similar way to set-theoretic operations on sorted lists that we've discussed in the previous part. It is, in fact, provided in the Lisp standard library. Using the standard merge, Merge sort may be written in a completely functional and also generic way to support any kind of sequences:

(defun merge-sort (seq comp)
(if (or (null seq) ; avoid expensive length calculation for lists
(<= (length seq) 1))
seq
(let ((half (floor (length seq) 2)))
(merge (type-of seq)
(merge-sort (subseq seq 0 half) comp)
(merge-sort (subseq seq half) comp)
comp))))

There's still one substantial difference of Merge sort from the array sorting functions: it is not in-place. So it also requires the O(n * log n) additional space to hold the half sublists that are produced at each iteration. Sorting and merging them in-place is not possible. There are ways to somewhat reduce this extra space usage but not totally eliminate it.

Parallelization of Merge Sort

The extra-space drawback of Merge sort may, however, turn irrelevant if we consider the problem of parallelizing this procedure. The general idea of parallelized implementation of any algorithm is to split the work in a way that allows reducing the runtime proportional to the number of workers performing those jobs. In the ideal case, if we have m workers and are able to spread the work evenly the running time should be reduced by a factor of m. For the Merge sort, it will mean just O(n/m * log n). Such ideal reduction is not always achievable, though, because often there are bottlenecks in the algorithm that require all or some workers to wait for one of them to complete its job.

Here's a trivial parallel Merge sort implementation that uses the eager-future2 library, which adds high-level data parallelism capabilities based on the Lisp implementation's multithreading facilities:

(defun parallel-merge-sort (seq comp)
(if (or (null seq) (<= (length seq) 1))
seq
(with ((half (floor (length seq) 2))
(thread1 (eager-future2:pexec
(merge-sort (subseq seq 0 half) comp)))
(thread2 (eager-future2:pexec
(merge-sort (subseq seq half) comp))))
(merge (type-of seq)
(eager-future2:yield thread1)
(eager-future2:yield thread2)
comp))))

The eager-future2:pexec procedure submits each merge-sort to the thread pool that manages multiple CPU threads available in the system and continues program execution not waiting for it to return. While eager-future2:yield pauses execution until the thread performing the appropriate merge-sort returns.

When I ran our testing function with both serial and parallel merge sorts on my machine, with 4 CPUs, I got the following result:

CL-USER> (with ((lst1 (random-list 10000))
(lst2 (copy-list lst1)))
(print-sort-timings "Merge " 'merge-sort lst1)
(print-sort-timings "Parallel Merge " 'parallel-merge-sort lst2))
= Merge sort of random vector =
Evaluation took:
0.007 seconds of real time
114.29% CPU
= Merge sort of sorted vector =
Evaluation took:
0.006 seconds of real time
116.67% CPU
= Merge sort of reverse sorted vector =
Evaluation took:
0.007 seconds of real time
114.29% CPU
= Parallel Merge sort of random vector =
Evaluation took:
0.003 seconds of real time
266.67% CPU
= Parallel Merge sort of sorted vector =
Evaluation took:
0.003 seconds of real time
266.67% CPU
= Parallel Merge sort of reverse sorted vector =
Evaluation took:
0.005 seconds of real time
220.00% CPU

A speedup of approximately 2x, which is also reflected by the rise in CPU utilization from around 100% (i.e. 1 CPU) to 250%. These are correct numbers as the merge procedure is still executed serially and remains the bottleneck. There are more sophisticated ways to achieve optimal m times speedup, in Merge sort parallelization, but we won't discuss them here due to their complexity.

Lists and Lisp

Historically, Lisp's name originated as an abbreviation of "List Processing", which points both to the significance that lists played in the language's early development and also to the fact that flexibility (a major feature of lists) was always a cornerstone of its design. Why are lists important to Lisp? Maybe, originally, it was connected with the availability and the good support of this data structure in the language itself. But, quickly, the focus shifted to the fact that, unlike other languages, Lisp code is input in the compiler not in a custom string-based format but in the form of nested lists that directly represent the syntax tree. Coupled with superior support for the list data structure, it opens numerous possibilities for programmatic processing of the code itself, which are manifest in the macro system, code walkers and generators, etc. So, "List Processing" turns out to be not about lists of data, but about lists of code, which perfectly describes the main distinctive feature of this language...


Footnotes:

[1] While, in the Lisp machines, cons cells even had special hardware support, and such change would have made it useless.

[2] Although, for structs, it is implementation-dependent if this will work. In the major implementations, it will.

19 Aug 2019 12:32pm GMT

13 Aug 2019

feedPlanet Lisp

Quicklisp news: August 2019 Quicklisp dist update now available

New projects:

Updated projects: also-alsa, april, bike, binary-io, binfix, black-tie, caveman, cl+ssl, cl-collider, cl-digikar-utilities, cl-fad, cl-geocode, cl-hamcrest, cl-ipfs-api2, cl-ledger, cl-markless, cl-mssql, cl-patterns, cl-permutation, cl-python, cl-readline, cl-sat, cl-sat.glucose, cl-sat.minisat, cl-sqlite, cl-str, cl-tiled, clack, clack-errors, closer-mop, clx, coleslaw, croatoan, datum-comments, easy-routes, eclector, eco, envy, fast-websocket, femlisp, float-features, flow, gendl, golden-utils, graph, http-body, jsown, kenzo, lucerne, magicl, matlisp, mcclim, mito, origin, parser.common-rules, petalisp, pjlink, portableaserve, postmodern, proc-parse, py4cl, quilc, quri, qvm, replic, rove, rpcq, rutils, sc-extensions, scalpl, sel, serapeum, simplified-types, sly, spinneret, staple, stumpwm, trivial-continuation, trivial-left-pad, trivial-monitored-thread, trivial-object-lock, trivial-pooled-database, uri-template, utilities.print-items, woo.

To get this update, use (ql:update-dist "quicklisp"). Enjoy!

13 Aug 2019 2:38pm GMT

12 Aug 2019

feedPlanet Lisp

Vsevolod Dyomkin: Programming Algorithms: Arrays

Arrays are, alongside structs, the most basic data structure and, at the same time, the default choice for implementing algorithms. A one-dimensional array that is also called a "vector" is a contiguous structure consisting of the elements of the same type. One of the ways to create such arrays, in Lisp, is this:

CL-USER> (make-array 3)
#(0 0 0)

The printed result is the literal array representation. It happens that the array is shown to hold 0's, but that's implementation-dependent. Additional specifics can be set during array initialization: for instance, the :element-type, :initial-element, and even full contents:

CL-USER> (make-array 3 :element-type 'list :initial-element nil)
#(NIL NIL NIL)
CL-USER> (make-array 3 :initial-contents '(1.0 2.0 3.0))
#(1.0 2.0 3.0)

If you read back such an array you'll get a new copy with the same contents:

CL-USER> #(1.0 2.0 3.0)
#(1.0 2.0 3.0)

It is worth noting that the element type restriction is, in fact, not a limitation the default type is T[1]. In this case, the array will just hold pointers to its elements that can be of arbitrary type. If we specify a more precise type, however, the compiler might be able to optimize storage and access by putting the elements in memory directly in the array space. This is, mainly, useful for numeric arrays, but it makes multiple orders of magnitude difference for them for several reasons, including the existence of vector CPU instructions that operate on such arrays.

The arrays we have created are mutable, i.e. we can change their contents, although we cannot resize them. The main operator to access array elements is aref. You will see it in those pieces of code, in this chapter, where we care about performance.

CL-USER> (let ((vec (make-array 3 :initial-contents '(1.0 2.0 3.0))))
(print (aref vec 0))
(print (? vec 1))
(:= (aref vec 2) 4.0))
(print (? vec 2))
(aref vec 3))
1.0
2.0
4.0
; Evaluation aborted on #<SIMPLE-TYPE-ERROR expected-type: (MOD 3) datum: 3>

In Lisp, array access beyond its boundary, as expected, causes an error.

It is also possible to create constant arrays using the literal notation #(). These constants can, actually, be changed in some environments, but don't expect anything nice to come out of such abuse - and the compiler will warn you of that:

CL-USER> (let ((vec #(1.0 2.0 3.0)))
(:= (aref vec 2) nil)
(print vec))
; caught WARNING:
; Destructive function (SETF AREF) called on constant data.
; See also:
; The ANSI Standard, Special Operator QUOTE
; The ANSI Standard, Section 3.2.2.3
;
; compilation unit finished
; caught 1 WARNING condition

#(1.0 2.0 NIL)

RUTILS provides more options to easily create arrays with a shorthand notation:

CL-USER> #v(1 2 3)
#(1 2 3)
CL-USER> (vec 1 2 3)
#(1 2 3)

Although the results seem identical they aren't. The first version creates a mutable analog of #(1 2 3), and the second also makes it adjustable (we'll discuss adjustable or dynamic arrays next).

Arrays as Sequences

Vectors are one of the representatives of the abstract sequence container type that has the following basic interface:

These methods have some specific that you should mind:

CL-USER> (with ((vec (vec 1 2 3))
(part (slice vec 2)))
(print part)
(:= (? part 0) 4)
(print part)
vec)

#(3)
#(4)
#(1 2 4)

Beyond the basic operations, sequences in Lisp are the target of a number of higher-order functions, such as find, position, remove-if etc. We'll get back to discussing their use later in the book.

Dynamic Vectors

Let's examine arrays from the point of view of algorithmic complexity. General-purpose data structures are usually compared by their performance on several common operations and, also, space requirements. These common operations are: access, insertion, deletion, and, sometimes, search.

In the case of ordinary arrays, the space used is the minimum possible: almost no overhead is incurred except, perhaps, for some meta-information about array size. Array element access is performed by index in constant time because it's just an offset from the beginning that is the product of index by the size of a single element. Search for an element requires a linear scan of the whole array or, in the special case of a sorted array, it can be done in O(log n) using binary search.

Insertion (at the end of an array) and deletion with arrays is problematic, though. Basic arrays are static, i.e. they can't be expanded or shrunk at will. The case of expansion requires free space after the end of the array that isn't generally available (because it's already occupied by other data used by the program) so it means that the whole array needs to be relocated to another place in memory with sufficient space. Shrinking is possible, but it still requires relocation of the elements following the deleted one. Hence, both of these operations require O(n) time and may also cause memory fragmentation. This is a major drawback of arrays.

However, arrays definitely should be the default choice for most algorithms. Why? First of all, because of the other excellent properties arrays provide and also because, in many cases, lack of flexibility can be circumvented in a certain manner. One common example is iteration with accumulation of results in a sequence. This is often performed with the help of a stack (as a rule, implemented with a linked list), but, in many cases (especially, when the length of the result is known beforehand), arrays may be used to the same effect. Another approach is using dynamic arrays, which add array resizing capabilities. And only in the case when an algorithm requires contiguous manipulation (insertion and deletion) of a collection of items or other advanced flexibility, linked data structures are preferred.

So, the first approach to working around the static nature of arrays is possible when we know the target number of elements. For instance, the most common pattern of sequence processing is to map a function over it, which produces the new sequence of the same size filled with results of applying the function to each element of the original sequence. With arrays, it can be performed even more efficiently than with a list. We just need to pre-allocate the resulting vector and set its elements one by one as we process the input:

(defun map-vec (fn vec)
"Map function FN over each element of VEC
and return the new vector with the results."
(let ((rez (make-array (length vec))))
(dotimes (i (length vec))
(:= (aref rez i) (call fn (aref vec i))))
rez))

CL-USER> (map-vec '1+ #(1 2 3))
#(2 3 4)

We use a specific accessor aref here instead of generic ? to ensure efficient operation in the so-called "inner loop" - although, there's just one loop here, but it will be the inner loop of many complex algorithms.

However, in some cases we don't know the size of the result beforehand. For instance, another popular sequence processing function is called filter or remove-if(-not) in Lisp. It iterates over the sequence and keeps only elements that satisfy/don't satisfy a certain predicate. It is, generally, unknown how many elements will remain, so we can't predict the size of the resulting array. One solution will be to allocate the full-sized array and fill only so many cells as needed. It is a viable approach although suboptimal. Filling the result array can be performed by tracking the current index in it or, in Lisp, by using an array with a fill-pointer:

(defun clumsy-filter-vec (pred vec)
"Return the vector with only those elements of VEC
for which calling pred returns true."
(let ((rez (make-array (length vec) :fill-pointer t)))
(dotimes (i (length vec))
(when (call pred (aref vec i))
(vector-push (aref vec i) rez)))
rez))

CL-USER> (describe (clumsy-filter-vec 'oddp #(1 2 3)))
#(1 3)
[vector]
Element-type: T
Fill-pointer: 2
Size: 3
Adjustable: yes
Displaced-to: NIL
Displaced-offset: 0
Storage vector: #<(SIMPLE-VECTOR 3) {100E9AF30F}>

Another, more general way, would be to use a "dynamic vector". This is a kind of an array that supports insertion by automatically expanding its size (usually, not one element at a time but proportionally to the current size of the array). Here is how it works:

CL-USER> (let ((vec (make-array 0 :fill-pointer t :adjustable t)))
(dotimes (i 10)
(vector-push-extend i vec)
(describe vec)))
#(0)
[vector]
Element-type: T
Fill-pointer: 1
Size: 1
Adjustable: yes
Displaced-to: NIL
Displaced-offset: 0
Storage vector: #<(SIMPLE-VECTOR 1) {100ED9238F}>

#(0 1)
Fill-pointer: 2
Size: 3

#(0 1 2)
Fill-pointer: 3
Size: 3

#(0 1 2 3)
Element-type: T
Fill-pointer: 4
Size: 7

...

#(0 1 2 3 4 5 6 7)
Fill-pointer: 8
Size: 15

#(0 1 2 3 4 5 6 7 8)
Element-type: T
Fill-pointer: 9
Size: 15

#(0 1 2 3 4 5 6 7 8 9)
Element-type: T
Fill-pointer: 10
Size: 15

For such "smart" arrays the complexity of insertion of an element becomes asymptotically constant: resizing and moving elements happens less and less often the more elements are added. With a large number of elements, this comes at a cost of a lot of wasted space, though. At the same time, when the number of elements is small (below 20), it happens often enough, so that the performance is worse than for a linked list that requires a constant number of 2 operations for each insertion (or 1 if we don't care to preserve the order). So, dynamic vectors are the solution that can be used efficiently only when the number of elements is neither too big nor too small.

Why Are Arrays Indexed from 0

Although most programmers are used to it, not everyone understands clearly why the choice was made, in most programming languages, for 0-based array indexing. Indeed, there are several languages that prefer a 1-based variant (for instance, MATLAB and Lua). This is quite a deep and yet very practical issue that several notable computer scientists, including Dijkstra, have contributed to.

At first glance, it is "natural" to expect the first element of a sequence to be indexed with 1, second - with 2, etc. This means that if we have a subsequence from the first element to the tenth it will have the beginning index 1 and the ending - 10, i.e. be a closed interval also called a segment: [1, 10]. The cons of this approach are the following:

  1. It is more straightforward to work with half-open intervals (i.e. the ones that don't include the ending index): especially, it is much more convenient to split and merge such intervals, and, also, test for membership. With 0-based indexing, our example interval would be half-open: [0, 10).

  2. If we consider multi-dimensional arrays that are most often represented using one-dimensional ones, getting an element of a matrix with indices i and j translates to accessing the element of an underlying vector with an index i*w + j or i + j*h for 0-based arrays, while for 1-based ones, it's more cumbersome: (i-1)*w + j. And if we consider 3-dimensional arrays (tensors), we'll still get the obvious i*w*h + j*h + k formula, for 0-based arrays, and, maybe, (i-1)*w*h + (j-1)*h + k for 1-based ones, although I'm not, actually, sure if it's correct (which shows how such calculations quickly become untractable). Besides, multi-dimensional array operations that are much more complex than mere indexing also often occur in many practical tasks, and they are also more complex and thus error-prone with base 1.

There are other arguments, but I consider them to be much more minor and a matter of taste and convenience. However, the intervals and multi-dimensional arrays issues are quite serious. And here is a good place to quote one of my favorite anecdotes that there are two hard problems in CS: cache invalidation and naming things,.. and off-by-one errors. Arithmetic errors with indexing are a very nasty kind of bug, and although it can't be avoided altogether 0-based indexing turns out to be a much more balanced solution.

Now, using 0-based indexing, let's write down the formula for finding the middle element of an array. Usually, it is chosen to be (floor (length array) 2). This element will divide the array into two parts, left and right, each one having length at least (1- (floor (length array) 2): the left part will always have such size and will not include the middle element. The right side will start from the middle element and will have the same size if the total number of array elements is even or be one element larger if it is odd.

Multi-Dimensional Arrays

So far, we have only discussed one-dimensional arrays. However, more complex data-structures can be represented using simple arrays. The most obvious example of such structures is multi-dimensional arrays. There's a staggering variety of other structures that can be built on top of arrays, such as binary (or, in fact, any n-ary) trees, hash-tables, and graphs, to name a few. If we have a chance to implement the data structure on an array, usually, we should not hesitate to take it as it will result in constant access time, good cache locality contributing to faster processing and, in most cases, efficient space usage.

Multi-dimensional arrays are a contiguous data-structure that stores its elements so that, given the coordinates of an element in all dimensions, it can be retrieved according to a known formula. Such arrays are also called tensors, and in case of 2-dimensional arrays - matrices. We have already seen one matrix example in the discussion of complexity:

#2A((1 2 3)
(4 5 6))

A matrix has rows (first dimension) and columns (second dimension). Accordingly, the elements of a matrix may be stored in the row-major or column-major order. In row-major, the elements are placed row after row - just like on this picture, i.e., the memory will contain the sequence: 1 2 3 4 5 6. In column-major order, they are stored by column (this approach is used in many "mathematical" languages, such as Fortran or MATLAB), so raw memory will look like this: 1 4 2 5 3 6. If row-major order is used the formula to access the element with coordinates i (row) and j (column) is: (+ (* i n) j) where n is the length of the matrix's row, i.e. its width. In the case of column-major order, it is: (+ i (* j m)) where m is the matrix's height. It is necessary to know, which storage style is used in a particular language as in numeric computing it is common to intermix libraries written in many languages - C, Fortran, and others - and, in the process, incompatible representations may clash.[2]

Such matrix representation is the most obvious one, but it's not exclusive. Many languages, including Java, use iliffe vectors to represent multi-dimensional arrays. These are vectors of vectors, i.e. each matrix row is stored in a separate 1-dimensional array, and the matrix is the vector of such vectors. Besides, more specific multi-dimensional arrays, such as sparse or diagonal matrices, may be represented using more efficient storage techniques at the expense of a possible loss in access speed. Higher-order tensors may also be implemented with the described approaches.

One classic example of operations on multi-dimensional arrays is matrix multiplication. The simple straightforward algorithm below has the complexity of O(n^3) where n is the matrix dimension. The condition for successful multiplication is equality of height of the first marix and width of the second one. The cubic complexity is due to 3 loops: by the outer dimensions of each matrix and by the inner identical dimension.

(defun m* (m1 m2)
(let ((n (array-dimension m1 1))
(n1 (array-dimension m1 0))
(n2 (array-dimension m2 1))
(rez (make-array (list n1 n2))))
(assert (= n (array-dimension m2 1)))
(dotimes (i n1)
(dotimes (j n2)
(let ((cur 0))
(dotimes (k n)
;; :+ is the incrementing analog of :=
(:+ cur (* (aref m1 i k)
(aref m2 k j))))
(:= (aref rez i j) cur))))
rez))

There are more efficient albeit much more complex versions using divide-and-conquer approach that can work in only O(n^2.37), but they have significant hidden constants and, that's why, are rarely used in practice, although if you're relying on an established library for matrix operations, such as the Fortran-based BLAS/ATLAS, you will find one of them under-the-hood.

Binary Search

Now, let's talk about some of the important and instructive array algorithms. The most prominent ones are searching and sorting.

A common sequence operation is searching for the element either to determine if it is present, to get its position or to retrieve the object that has a certain property (key-based search). The simple way to search for an element in Lisp is using the function find:

CL-USER> (let ((vec #v((pair :foo :bar) (pair :baz :quux))))
(print (find (pair :foo :bar) vec))
(print (find (pair :foo :bar) vec :test 'equal))
(print (find (pair :bar :baz) vec :test 'equal))
(print (find :foo vec :key 'lt)))
NIL
(:FOO :BAR)
NIL
(:FOO :BAR)

In the first case, the element was not found due to the wrong comparison predicate: the default eql will only consider to structures the same if it's the same object, and, in this case, there will be two separate pairs with the same content. So, the second search is successful as equal performs deep comparison. Then the element is not found as it is just not present. And, in the last case, we did the key-based search looking just at the lt element of all pairs in vec.

Such search is called sequential scan because it is performed in a sequential manner over all elements of the vector starting from the beginning (or end if we specify :from-end t) until either the element is found or we have examined all the elements. The complexity of such search is, obviously, O(n), i.e. we need to access each element of the collection (if the element is present we'll look, on average, at n/2 elements, and if not present - always at all n elements).

However, if we know that our sequence is sorted, we can perform the search much faster. The algorithm used for that is one of the most famous algorithms that every programmer has to know and use, from time to time - binary search. The more general idea behind it is called "divide and conquer": if there's some way, looking at one element, to determine the outcome of our global operation for more than just this element we can discard the part, for which we already know that the outcome is negative. In binary search, when we're looking at an arbitrary element of the sorted vector and compare it with the item we search for:

Thus, each time we can examine the middle element and, after that, can discard half of the elements of the array without checking them. We can repeat such comparisons and halving until the resulting array contains just a single element.

Here's the straightforward binary search implementation using recursion:

(defun bin-search (val vec &optional (pos 0))
(if (> (length vec) 1)
(with ((mid (floor (+ beg end) 2))
(cur (aref vec mid)))
(cond ((< cur val) (bin-search val
(slice vec (1+ mid))
(+ pos mid 1)))
((> cur val) (bin-search val
(slice vec 0 (1+ mid))
pos))
(t (+ pos mid))))
(when (= (aref vec 0) val)
pos)))

If the middle element differs from the one we're looking for it halves the vector until just one element remains. If the element is found its position (which is passed as an optional 3rd argument to the recursive function) is returned. Note that we assume that the array is sorted. Generally, there's no way to quickly check this property unless we examine all array elements (and thus lose all the benefits of binary search). That's why we don't assert the property in any way and just trust the programmer :)

An important observation is that such recursion is very similar to a loop that at each stage changes the boundaries we're looking in-between. Not every recursive function can be matched with a similar loop so easily (for instance, when there are multiple recursive calls in its body an additional memory data structure is needed), but when it is possible it usually makes sense to choose the loop variant. The pros of looping is the avoidance of both the function calls' overhead and the danger of hitting the recursion limit or the stack overflow associated with it. While the pros of recursion are simpler code and better debuggability that comes with the possibility to examine each iteration by tracing using the built-in tools.

Another thing to note is interesting counter-intuitive arithmetic of additional comparisons. In our naive approach, we had 3 cond clauses, i.e. up to 2 comparisons to make at each iteration. In total, we'll look at (log n 2) elements of our array, so we have no more than (/ (1- (log n 2)) n) chance to match the element with the = comparison before we get to inspect the final 1-element array. I.e. with the probability of (- 1 (/ (1- (log n 2)) n)) we'll have to make all the comparisons up to the final one. Even for such small n as 10 this probability is 0.77 and for 100 - 0.94. And this is an optimistic estimate for the case when the element searched for is actually present in the array, which may not always be so. Otherwise, we'll have to make all the comparisons. Effectively, these numbers prove the equality comparison meaningless and just a waste of computation, although from "normal" programmer intuition it might seem like a good idea to implement early exit in this situation...

Finally, there's also one famous non-obvious bug associated with the binary search that was still present in many production implementations, for many years past the algorithm's inception. It's also a good example of the dangers of forfeiting boundary conditions check that is the root of many severe problems plaguing our computer systems by opening them to various exploits. The problem, in our code, may manifest in systems that have limited integer arithmetic with potential overflow. In Lisp, if the result of summing two fixnums is greater than most-positive-fixnum (the maximum number that can be represented directly by the machine word) it will be automatically converted to bignums, which are a slower representation but with unlimited precision:

CL-USER> most-positive-fixnum
4611686018427387903
CL-USER> (type-of most-positive-fixnum)
(INTEGER 0 4611686018427387903)
CL-USER> (+ most-positive-fixnum most-positive-fixnum)
9223372036854775806
CL-USER> (type-of (+ most-positive-fixnum most-positive-fixnum))
(INTEGER 4611686018427387904)

In many other languages, such as C or Java, what will happen is either silent overflow (the worst), in which case we'll get just the remainder of division of the result by the maximum integer, or an overflow error. Both of these situations are not accounted for in the (floor (+ beg end) 2) line. The simple fix to this problem, which makes sense to keep in mind for future similar situations, is to change the computation to the following equivalent form: (+ beg (floor (- end beg) 2)). It will never overflow. Why? Try to figure out on your own ;)

Taking all that into account and allowing for a custom comparator function, here's an "optimized" version of binary search that returns 3 values:

(defun bin-search (val vec &key (less '<) (test '=) (key 'identity))
(when (plusp (length vec))
(let ((beg 0)
(end (length vec)))
(do ()
((= beg end))
(let ((mid (+ beg (floor (- end beg) 2))))
(if (call less (call key (aref vec mid)) val)
(:= beg (1+ mid))
(:= end mid))))
(values (aref vec beg)
beg
(call test (call key (aref vec beg)) val)))))

How many loop iterations do we need to complete the search? If we were to take the final one-element array and expand the array from it by adding the discarded half it would double in size at each step, i.e. we'll be raising 2 to the power of the number of expansion iterations (initially, before expansion - after 0 iterations - we have 1 element, which is 2^0, after 1 iteration, we have 2 elements, after 2 - 4, and so on). The number of iterations needed to expand the full array may be calculated by the inverse of exponentiation - the logarithmic function. I.e. we'll need (log n 2) iterations (where n is the initial array size). Shrinking the array takes the same as expanding, just in the opposite order, so the complexity of binary search is O(log n).

How big is the speedup from linear to logarithmic complexity? Let's do a quick-and-dirty speed comparison between the built-in (and optimized) sequential scan fucntion find and our bin-search:

CL-USER> (with ((size 100000000)
(mid (1+ (/ size 2)))
(vec (make-array size)))
(dotimes (i size)
(:= (? vec i) i))
(time (find mid vec))
(time (bin-search mid vec)))
Evaluation took:
0.591 seconds of real time
0.595787 seconds of total run time (0.595787 user, 0.000000 system)
100.85% CPU
...
Evaluation took:
0.000 seconds of real time
0.000000 seconds of total run time (0.000000 user, 0.000000 system)
100.00% CPU
...

Unfortunately, I don't have enough RAM on my notebook to make bin-search take at least a millisecond of CPU time. We can count nanoseconds to get the exact difference, but a good number to remember is that (log 1000000 2) is approximately 20, so, for the million elements array, the speedup will be 50000x!

The crucial limitation of binary search is that it requires our sequence to be pre-sorted because sorting before each search already requires at least linear time to complete, which kills any performance benefit we might have expected. There are multiple situations when the pre-sort condition may hold without our intervention:

A final note on binary search: obviously, it will only work fast for vectors and not linked sequences.

Binary Search in Action

In one consumer internet company I was working for, a lot of text processing (which was the company's bread-and-butter) relied on access to a huge statistical dataset called "ngrams". Ngrams is a simple Natural Language Processing concept: basically, they are phrases of a certain length. A unigram (1gram) is a single word, a bigram - a pair of words, a fivegram - a list of 5 words. Each ngram has some weight associated with it, which is calculated (estimated) from the huge corpus of texts (we used the crawl of the whole Internet). There are numerous ways to estimate this weight, but the basic one is to just count the frequency of the occurance of a specific ngram phrase in the corpus.

The total number of ngrams may be huge: for our case, the whole dataset, on disk, measured in tens of gigabytes. And the application requires constant random access to it. Using an off-the-shelf database would have incurred us too much overhead as such systems are general-purpose and don't optimize for the particular use cases, like the one we had. So, a special-purpose solution was needed. In fact, now there is readily-available ngrams handling software, such as KenLM. We have built our own, and, initially, it relied on binary search of the in-memory dataset to answer the queries. Considering the size of the data, what do you think was the number of operations required? I don't remember it exactly, but somewhere between 25 and 30. For handling tens of gigabytes or hundreds of millions/billions of ngrams - quite a decent result. And, most important, it didn't exceed our application's latency limits! The key property that enabled such solution was the fact that all the ngrams were known beforehand and hence the dataset could be pre-sorted. Yet, eventually, we moved to an even faster solution based on perfect hash-tables (that we'll discuss later in this book).

One more interesting property of this program was that it took significant time to initialize as all the data had to be loaded into memory from disk. During that time, which measured in several dozens of minutes, the application was not available, which created a serious bottleneck in the whole system and complicated updates as well as put normal operation at additional risk. The solution we utilized to counteract this was also a common one for such cases: lazy loading in memory using the Unix mmap facility.

Sorting

Sorting is another fundamental sequence operation that has many applications. Unlike searching, the sorted sequence, there is no single optimal algorithm for sorting, and different data structures allow different approaches to it. In general, the problem of sorting a sequence is to place all of its elements in a certain order determined by the comparison predicate. There are several aspects that differentiate sorting functions:

One more aspect of a particular sorting algorithm is its behavior on several special kinds of input data: already sorted (in direct and reversed order), almost sorted, completely random. An ideal algorithm should show better than average performance (up to O(1)) on the sorted and almost sorted special cases.

Over the history of CS, sorting was and still remains a popular research topic. Not surprisingly, several dozens of different sorting algorithms were developed. But before discussing the prominent ones, let's talk about "Stupid sort" (or "Bogosort"). It is one of the sorting algorithms that has a very simple idea behind, but an outstandingly nasty performance. The idea is that among all permutations of the input sequence there definitely is the completely sorted one. If we were to take it, we don't need to do anything else. It's an example of the so-called "generate and test" paradigm that may be employed when we know next to nothing about the nature of our task: then, put some input into the black box and see the outcome. In the case of bogosort, the number of possible inputs is the number of all permutations that's equal to n!, so considering that we need to also examine each permutation's order the algorithm's complexity is O(n * n!) - quite a bad number, especially, since some specialized sorting algorithms can work as fast as O(n) (for instance, Bucket sort for integer numbers). On the other hand, if generating all permutations is a library function and we don't care about complexity such an algorithm will have a rather simple implementation that looks quite innocent. So you should always inquire about the performance characteristics of 3rd-party functions. And, by the way, your standard library sort function is also a good example of this rule.

(defun bogosort (vec comp)
(dolist (variant (all-permutations vec))
(dotimes (i (1- (length variant)))
;; this is the 3rd optional argument of dotimes header
;; that is evaluated only after the loop finishes normally
;; if it does we have found a completely sorted permutation!
(return-from bogosort variant))
(when (call comp (? variant (1+ i)) (? variant i))
(return))))) ; current variant is not sorted, skip it

O(n^2) Sorting

Although we can imagine an algorithm with even worse complexity factors than this, bogosort gives us a good lower bound on the sorting algorithm's performance and an idea of the potential complexity of this task. However, there are much faster approaches that don't have a particularly complex implementation. There is a number of such simple algorithms that work in quadratic time. A very well-known one, which is considered by many a kind of "Hello world" algorithm, is Bubble sort. Yet, in my opinion, it's quite a bad example to teach (sadly, often it is taught) because it's both not very straightforward and has poor performance characteristics. That's why it's never used in practice. There are two other simple quadratic sorting algorithms that you actually have a chance to encounter in the wild, especially, Insertion sort that is used rather frequently. Their comparison is also quite insightful, so we'll take a look at both, instead of focusing just on the former.

Selection sort is an in-place sorting algorithm that moves left-to-right from the beginning of the vector one element at a time and builds the sorted prefix to the left of the current element. This is done by finding the "largest" (according to the comparator predicate) element in the right part and swapping it with the current element.

(defun selection-sort (vec comp)
(dotimes (i (1- (length vec)))
(let ((best (aref vec i))
(idx i))
(dotimes (j (- (length vec) i 1))
(when (call comp (aref vec (+ i j 1)) best)
(:= best (aref vec (+ i j 1))
idx (+ i j 1)))))
(rotatef (aref vec i) (aref vec idx))) ; this is the lisp's swap operator
vec)

Selection sort requires a constant number of operations regardless of the level of sortedness of the original sequence: (/ (* n (- n 1)) 2) - the sum of the arithmetic progression from 1 to n, because, at each step, it needs to fully examine the remainder of the elements to find the maximum, and the remainder's size varies from n to 1. It handles equally well both contiguous and linked sequences.

Insertion sort is another quadratic-time in-place sorting algorithm that builds the sorted prefix of the sequence. However, it has a few key differences from Selection sort: instead of looking for the global maximum in the right-hand side it looks for a proper place of the current element in the left-hand side. As this part is always sorted it takes linear time to find the place for the new element and insert it there leaving the side in sorted order. Such change has great implications:

(defun insertion-sort (vec comp)
(dotimes (i (1- (length vec)))
(do ((j i (1- j)))
((minusp j))
(if (call comp (aref vec (1+ j)) (aref vec j))
(rotatef (aref vec (1+ j)) (aref vec j))
(return))))
vec)

As you see, the implementation is very simple: we look at each element starting from the second, compare it to the previous element, and if it's better we swap them and continue the comparison with the previous element until we reach the array's beginning.

So, where's the catch? Is there anything that makes Selection sort better than Insertion? Well, if we closely examine the number of operations required by each algorithm we'll see that Selection sort needs exactly (/ (* n (- n 1)) 2) comparisons and on average n/2 swaps. For Insertion sort, the number of comparisons varies from n-1 to (/ (* n (- n 1)) 2), so, in the average case, it will be (/ (* n (- n 1)) 4), i.e. half as many as for the other algorithm. In the sorted case, each element is already in its position, and it will take just 1 comparison to discover that, in the reverse sorted case, the average distance of an element from its position is (/ (- n 1) 2), and for the middle variant, it's in the middle, i.e. (/ (- n 1) 4). Times the number of elements (n). But, as we can see from the implementation, Insertion sort requires almost the same number of swaps as comparisons, i.e. (/ (* (- n 1) (- n 2)) 4) in the average case, and it matches the number of swaps of Selection sort only in the close to best case, when each element is on average 1/2 steps away from its proper position. If we sum up all comparisons and swaps for the average case, we'll get the following numbers:

The second number is slightly higher than the first. For small ns it is almost negligible: for instance, when n=10, we get 55 operations for Selection sort and 63 for Insertion. But, asymptotically (for huge ns like millions and billions), Insertion sort will need 1.5 times more operations. Also, it is often the case that swaps are more expensive operations than comparisons (although, the opposite is also possible).

In practice, Insertion sort ends up being used more often, for, in general, quadratic sorts are only used when the input array is small (and so the difference in the number of operations) doesn't matter, while it has other good properties we mentioned. However, one situation when Selection sort's predictable performance is an important factor is in the systems with deadlines.

Quicksort

There is a number of other O(n^2) sorting algorithms similar to Selection and Insertion sorts, but studying them quickly turns boring so we won't. As there's also a number of significantly faster algorithms that work in O(n * log n) time (almost linear). They usually rely on the divide-and-conquer approach when the whole sequence is recursively divided into smaller subsequences that have some property, thanks to which it's easier to sort them, and then these subsequences are combined back into the final sorted sequence. The feasibility of such performance characteristics is justified by the observation that ordering relations are recursive, i.e. if we have compared two elements of an array and then compare one of them to the third element, with a probability of 1/2 we'll also know how it relates to the other element.

Probably, the most famous of such algorithms is Quicksort. Its idea is, at each iteration, to select some element of the array as the "pivot" point and divide the array into two parts: all the elements that are smaller and all those that are larger than the pivot; then recursively sort each subarray. As all left elements are below the pivot and all right - above when we manage to sort the left and right sides the whole array will be sorted. This invariant holds for all iterations and for all subarrays. The word "invariant", literally, means some property that doesn't change over the course of the algorithm's execution when other factors, e.g. bounds of the array we're processing, are changing.

There're several tricks in Quicksort implementation. The first one has to do with pivot selection. The simplest approach is to always use the last element as the pivot. Now, how do we put all the elements greater than the pivot after it if it's already the last element? Let's say that all elements are greater - then the pivot will be at index 0. Now, if moving left to right over the array we encounter an element that is not greater than the pivot we should put it before, i.e. the pivot's index should increment by 1. When we reach the end of the array we know the correct position of the pivot, and in the process, we can swap all the elements that should precede it in front of this position. Now, we have to put the element that is currently occupying the pivot's place somewhere. Where? Anywhere after the pivot, but the most obvious thing is to swap it with the pivot.

(defun quicksort (vec comp)
(when (> (length vec) 1)
(with ((pivot-i 0)
(pivot (aref vec (1- (length vec)))))
(dotimes (i (1- (length vec)))
(when (call comp (aref vec i) pivot)
(rotatef (aref vec i)
(aref vec pivot-i))
(:+ pivot-i)))
;; swap the pivot (last element) in its proper place
(rotatef (aref vec (1- (length vec)))
(aref vec pivot-i))
(quicksort (slice vec 0 pivot-i) comp)
(quicksort (slice vec (1+ pivot-i)) comp)))
vec)

Although recursion is employed here, such implementation is space-efficient as it uses array displacement ("slicing") that doesn't create new copies of the subarrays, so sorting happens in-place. Speaking of recursion, this is one of the cases when it's not so straightforward to turn it into looping (this is left as an exercise to the reader :) ).

What is the complexity of such implementation? Well, if, on every iteration, we divide the array in two equal halves we'll need to perform n comparisons and n/2 swaps and increments, which totals to 2n operations. And we'll need to do that (log n 2) times, which is the height of a complete binary tree with n elements. At every level in the recursion tree, we'll need to perform twice as many sorts with twice as little data, so each level will take the same number of 2n operations. Total complexity: 2n * (log n 2), i.e. O(n * log n). In the ideal case.

However, we can't guarantee that the selected pivot will divide the array into two ideally equal parts. In the worst case, if we were to split it into 2 totally unbalanced subarrays, with n-1 and 0 elements respectively, we'd need to perform sorting n times and had to perform a number of operations that will diminish in the arithmetic progression from 2n to 2. Which sums to (* n (- n 1)). A dreaded O(n^2) complexity. So, the worst-case performance for quicksort is not just worse, but in a different complexity league than the average-case one. Moreover, the conditions for such performance (given our pivot selection scheme) are not so uncommon: sorted and reverse-sorted arrays. And the almost sorted ones will result in the almost worst-case scenario.

It is also interesting to note that if, at each stage, we were to split the array into parts that have a 10:1 ratio of lengths this would have resulted in n * log n complexity! How come? The 10:1 ratio, basically, means that the bigger part each time is shortened at a factor of around 1.1, which still is a power-law recurrence. The base of the algorithm will be different, though: 1.1 instead of 2. Yet, from the complexity theory point of view, the logarithm base is not important because it's still a constant: (log n x) is the same as (/ (log n 2) (log x 2)), and (/ 1 (log x 2)) is a constant for any fixed logarithm base x. In our case, if x is 1.1 the constant factor is 7.27. Which means that quicksort, in the quite bad case of recurring 10:1 splits, will be just a little more than 7 times slower than, in the best case, of recurring equal splits. Significant - yes. But, if we were to compare n * log n (with base 2) vs n^2 performance for n=1000 we'd already get a 100 times slowdown, which will only continue increasing as the input size grows. Compare this to a constant factor of 7...

So, how do we achieve at least 10:1 split, or, at least, 100:1, or similar? One of the simple solutions is called 3-medians approach. The idea is to consider not just a single point as a potential pivot but 3 candidates: first, middle, and last points - and select the one, which has the median value among them. Unless accidentally two or all three points are equal, this guarantees us not taking the extreme value that is the cause of the all-to-nothing split. Also, for a sorted array, this should produce a nice near to equal split. How probable is stumbling at the special case when we'll always get at the extreme value due to equality of the selected points? The calculations here are not so simple, so I'll give just the answer: it's extremely improbable that such condition will hold for all iterations of the algorithm due to the fact that we'll always remove the last element and all the swapping that is going on. More precisely, the only practical variant when it may happen is when the array consists almost or just entirely of the same elements. And this case will be addressed next. One more refinement to the 3-medians approach that will work even better for large arrays is 9-medians that, as is apparent from its name, performs the median selection not among 3 but 9 equidistant points in the array.

Dealing with equal elements is another corner case for quicksort that should be addressed properly. The fix is simple: to divide the array not in 2 but 3 parts, smaller, larger, and equal to the pivot. This will allow for the removal of the equal elements from further consideration and will even speed up sorting instead of slowing it down. The implementation adds another index (this time, from the end of the array) that will tell us where the equal-to-pivot elements will start, and we'll be gradually swapping them into this tail as they are encountered during array traversal.

Production Sort

I was always wondering how it's possible, for Quicksort, to be the default sorting algorithm when it has such bad worst-case performance and there are other algorithms like Merge sort or Heap sort that have guaranteed O(n * log n) ones. With all the mentioned refinements, it's apparent that the worst-case scenario, for Quicksort, can be completely avoided (in the probabilistic sense) while it has a very nice property of sorting in-place with good cache locality, which significantly contributes to better real-world performance. Moreover, production sort implementation will be even smarter by utilizing Quicksort while the array is large and switching to something like Insertion sort when the size of the subarray reaches a certain threshold (10-20 elements). All this, however, is applicable only to arrays. When we consider lists, other factors come into play that make Quicksort much less plausible.

Here's an attempt at such - let's call it "Production sort" - implementation (the function 3-medians is left as an excercise to the reader).

(defun prod-sort (vec comp &optional (eq 'eql))
(cond ((< (length vec) 2)
vec)
((< (length vec) 10)
(insertion-sort vec comp))
(t
(rotatef (aref vec (1- (length vec)))
(aref vec (3-medians vec comp eq)))
(with ((pivot-i 0)
(pivot-count 1)
(last-i (1- (length vec)))
(pivot (aref vec last-i)))
(do ((i 0 (1+ i)))
((> i (- last-i pivot-count)))
(cond ((call comp (aref vec i) pivot)
(rotatef (aref vec i)
(aref vec pivot-i))
(:+ pivot-i))
((call eq (aref vec i) pivot)
(rotatef (aref vec i)
(aref vec (- last-i pivot-count)))
(:+ pivot-count)
(:- i)))) ; decrement i to reprocess newly swapped point
(dotimes (i pivot-count)
(rotatef (aref vec (+ pivot-i i))
(aref vec (- last-i i))))
(prod-sort (slice vec 0 pivot-i) comp eq)
(prod-sort (slice vec (+ pivot-i pivot-count)) comp eq))))
vec)

All in all, the example of Quicksort is very interesting, from the point of view of complexity analysis. It shows the importance of analyzing the worst-case and other corner-case scenarios, and, at the same time, teaches that we shouldn't give up immediately if the worst case is not good enough, for there may be ways to handle such corner cases that reduce or remove their impact.

Performance Benchmark

Finally, let's look at our problem from another angle: simple and stupid. We have developed 3 sorting functions' implementations: Insertion, Quick, and Prod. Let's create a tool to compare their performance on randomly generated datasets of decent sizes. This may be done with the following code and repeated many times to exclude the effects of randomness.

(defun random-vec (size)
(let ((vec (make-array size)))
(dotimes (i size)
(:= (? vec i) (random size)))
vec))

(defun print-sort-timings (sort-name sort-fn vec)
;; we'll use in-place modification of the input vector VEC
;; so we need to copy it to preserve the original for future use
(let ((vec (copy-seq vec))
(len (length vec)))
(format t "= ~Asort of random vector (length=~A) =~%"
sort-name len)
(time (call sort-fn vec '<))
(format t "= ~Asort of sorted vector (length=~A) =~%"
sort-name len)
(time (call sort-fn vec '<))
(format t "= ~Asort of reverse sorted vector (length=~A) =~%"
sort-name len)
(time (call sort-fn vec '>))))

CL-USER> (let ((vec (random-vec 1000)))
(print-sort-timings "Insertion " 'insertion-sort vec)
(print-sort-timings "Quick" 'quicksort vec)
(print-sort-timings "Prod" 'prod-sort vec))
= Insertion sort of random vector (length=1000) =
Evaluation took:
0.128 seconds of real time
...
= Insertion sort of sorted vector (length=1000) =
Evaluation took:
0.001 seconds of real time
...
= Insertion sort of reverse sorted vector (length=1000) =
Evaluation took:
0.257 seconds of real time
...
= Quicksort of random vector (length=1000) =
Evaluation took:
0.005 seconds of real time
...
= Quicksort of sorted vector (length=1000) =
Evaluation took:
5.429 seconds of real time
...
= Quicksort of reverse sorted vector (length=1000) =
Evaluation took:
2.176 seconds of real time
...
= Prodsort of random vector (length=1000) =
Evaluation took:
0.008 seconds of real time
...
= Prodsort of sorted vector (length=1000) =
Evaluation took:
0.004 seconds of real time
...
= Prodsort of reverse sorted vector (length=1000) =
Evaluation took:
0.007 seconds of real time

Overall, this is a really primitive approach that can't serve as conclusive evidence on its own, but it has value as it aligns well with our previous calculations. Moreover, it once again reveals some things that may be omitted in those calculations: for instance, the effects of the hidden constants of the Big-O notation or of the particular programming vehicles used. We can see that, for their worst-case scenarios, where Quicksort and Insertion sort both have O(n^2) complexity and work the longest, Quicksort comes 10 times slower, although it's more than 20 times faster for the average case. This slowdown may be attributed both to the larger number of operations and to using recursion. Also, our Prodsort algorithm demonstrates its expected performance. As you see, such simple testbeds quickly become essential in testing, debugging, and fine-tuning our algorithms' implementations. So it's a worthy investment.

Finally, it is worth noting that array sort is often implemented as in-place sorting, which means that it will modify (spoil) the input vector. We use that in our test function: first, we sort the array and then sort the sorted array in direct and reverse orders. This way, we can omit creating new arrays. Such destructive sort behavior may be both the intended and surprising behavior. The standard Lisp's sort and stable-sort functions also exhibit it, which is, unfortunately, a source of numerous bugs due to the application programmer forgetfulness of the function's side-effects (at least, this is an acute case, for myself). That's why RUTILS provides an additional function safe-sort that is just a thin wrapper over standard sort to free the programmer's mind from worrying or forgetting about this treacherous sort's property.

A few points we can take away from this chapter:

  1. Array is a goto structure for implementing your algorithms. First, try to fit it before moving to other things like lists, trees, and so on.
  2. Complexity estimates should be considered in context: of the particular task's requirements and limitations, of the hardware platform, etc. Performing some real-world benchmarking alongside back-of-the-napkin abstract calculations may be quite insightful.
  3. It's always worth thinking of how to reduce the code to the simplest form: checking of additional conditions, recursion, and many other forms of code complexity, although, rarely are a game changer, often may lead to significant unnecessary slowdowns.

Footnotes:

[1] or void* in C, or some other type that allows any element in your language of choice

[2] Such incompatibility errors are not a cheap thing: for instance, it is reported that the crash of the first Arian V rocket happened due to interoperation of two programs that used the metric and the imperial measurement systems without explicit conversion of the data. There's an elegant solution to such problem: "dimensional numbers", which a custom reader macro to encode the measure alongside the number. Here is a formula expressed with such numbers:

(defun running-distance-for-1kg-weight-loss (mass)
(* 1/4 (/ #M37600kJ (* #M0.98m/s2 mass))))

CL-USER> (running-distance-for-1kg-weight-loss #M80kg)
119897.96
CL-USER> (running-distance-for-1kg-weight-loss #I200lb)
105732.45

The output is, of course, in metric units. Unfortunately, this approach will not be useful for arrays encoded by different languages as they are obtained not by reading the input but by referencing external memory. Instead, a wrapper struct/class is, usually, used to specify the elements order.

12 Aug 2019 1:37pm GMT

06 Aug 2019

feedPlanet Lisp

Nicolas Hafner: An Extensible Particle System - Gamedev

header
This article was originally published on GameDev.NET. In it, I illustrate a new particle system that was developed for my Lisp game engine, Trial. It contains quite a bit of graphics stuff, but also a lot of Lisp. I thought it would be worthwhile to share it here as well. For those unfamiliar, a particle system deals in orchestrating a lot of very similar things (particles). The challenge is to efficiently draw and update these particles.

For the drawing we consider two separate parts - the geometry used for each particle, and the data used to distinguish one particle from another. We pack both of these two parts into a singular vertex array, using instancing for the vertex attributes of the latter part. This allows us to use instanced drawing and draw all of the particles in one draw call. In the particle shader we then need to make sure to add the particle's location offset, and to do whatever is necessary to render the geometry appropriately as usual. This can be done easily enough in any game engine, though it would be much more challenging to create a generic system that can easily work with any particle geometry and any rendering logic. In Trial this is almost free.

There's two parts in Trial that allow me to do this: first, the ability to inherit and combine opaque shader parts along the class hierarchy, and second, the ability to create structures that are backed by an opaque memory region, while retaining the type information. The latter part is not that surprising for languages where you can cast memory and control the memory layout precisely, but nonetheless in Trial you can combine these structures through inheritance, something not typically possible without significant hassle. Trial also allows you to describe the memory layout precisely. For instance, this same system is used to represent uniform buffer objects, as well as what we're using here, which is attributes in a vertex buffer.

If you'll excuse the code dump, we'll now take a look at the actual particle system implementation:

(define-gl-struct (particle (:layout-standard :vertex-buffer))
  (lifetime :vec2 :accessor lifetime))

(define-shader-subject particle-emitter ()
  ((live-particles :initform 0 :accessor live-particles)
   (vertex-array :accessor vertex-array)
   (particle-buffer :initarg :particle-buffer :accessor particle-buffer)))

(defmethod initialize-instance :after ((emitter particle-emitter) &key particle-mesh particle-buffer)
  (setf (vertex-array emitter)
        (add-vertex-bindings
         particle-buffer
         (change-class particle-mesh 'vertex-array))))

(defmethod paint ((emitter particle-emitter) pass)
  (let ((vao (vertex-array emitter)))
    (gl:bind-vertex-array (gl-name vao))
    (%gl:draw-elements-instanced (vertex-form vao) (size vao) :unsigned-int 0 (live-particles emitter))))

(defgeneric initial-particle-state (emitter tick particle))
(defgeneric update-particle-state (emitter tick input output))
(defgeneric new-particle-count (emitter tick)) ; => N

(define-handler (particle-emitter tick) (ev)
  (let ((vbo (particle-buffer particle-emitter))
        (write-offset 0))
    (let ((data (struct-vector vbo)))
      (declare (type simple-vector data))
      (loop for read-offset from 0 below (live-particles particle-emitter)
            for particle = (aref data read-offset)
            do (when (< (vx2 (lifetime particle)) (vy2 (lifetime particle)))
                 (when (update-particle-state particle-emitter ev particle (aref data write-offset))
                   (incf write-offset))))
      (loop repeat (new-particle-count particle-emitter ev)
            while (< write-offset (length data))
            do (initial-particle-state particle-emitter ev (aref data write-offset))
               (incf write-offset))
      (setf (live-particles particle-emitter) write-offset)
      (update-buffer-data vbo T))))

Let's go over this real quick. We first define a base class for all particles. This only mandates the lifetime field, which is a vector composed of the current age and the max age. This is used by the emitter to check liveness. Any other attribute of a particle is specific to the use-case, so we leave that up to the user.

Next we define our main particle-emitter class. It's called a "shader subject" in Trial, which means that it has shader code attached to the class, and can react to events in separate handler functions. Anyway, all we need for this class is to keep track of the number of live particles, the vertex array for all the particles, and the buffer we use to keep the per-particle data. In our constructor we construct the vertex array be combining the vertex attribute bindings of the particle buffer and the particle mesh.

The painting logic is very light, as we just need to bind the vertex array and do an instanced draw call, using the live-particles count for our current number of instances.

The three functions defined afterwards specify the protocol users need to follow to actually create and update the particles throughout their lifetime. The first function fills the initial state into the passed particle instance, the second uses the info from the input particle instance to fill the update into the output particle info, and the final function determines the number of new particles per update. These particle instances are instances of the particle class the user specifies through the particle-buffer, but their fields are backed by a common byte array. This allows us to make manipulation of the particles feel native and remain extensible, without requiring complex and expensive marshalling.

Finally we come to the bulk of the code, which is the tick update handler. This does not do too much in terms of logic, however. We simply iterate over the particle vector, checking the current lifetime. If the particle is still alive, we call the update-particle-state function. If this succeeds, we increase the write-offset into the particle vector. If it does not succeed, or the particle is dead, the write-offset remains the same, and the particle at that position will be overwritten by the next live, successful update. This in effect means that live particles are always at the beginning of the vector, allowing us to cut off the dead ones with the live-particles count. Then, we simply construct as many new particles as we should without overrunning the array, and finally we upload the buffer data from RAM to the GPU by using update-buffer-data, which in effect translates to a glBufferSubData call.

Now that we have this base protocol in place we can define a simple standard emitter, which should provide a much easier interface.

(define-gl-struct (simple-particle (:include particle)
                                   (:layout-standard :vertex-buffer))
  (location :vec3 :accessor location)
  (velocity :vec3 :accessor velocity))

(define-shader-subject simple-particle-emitter (particle-emitter)
  ())

(defmethod initial-particle-state :before ((emitter simple-particle-emitter) tick particle)
  (setf (location particle) (vec 0 0 0)))

(defmethod update-particle-state ((emitter simple-particle-emitter) tick particle output)
  (setf (location output) (v+ (location particle) (velocity particle)))
  (let ((life (lifetime particle)))
    (incf (vx2 life) (dt tick))
    (setf (lifetime output) life)
    (< (vx2 life) (vy2 life))))

(defmethod paint :before ((emitter simple-particle-emitter) (pass shader-pass))
  (let ((program (shader-program-for-pass pass emitter)))
    (setf (uniform program "view_matrix") (view-matrix))
    (setf (uniform program "projection_matrix") (projection-matrix))
    (setf (uniform program "model_matrix") (model-matrix))))

(define-class-shader (simple-particle-emitter :vertex-shader)
  "layout (location = 0) in vec3 vtx_location;
layout (location) in vec3 location;

uniform mat4 model_matrix;
uniform mat4 view_matrix;
uniform mat4 projection_matrix;

void main(){
  vec3 position = vtx_location + location;
  gl_Position = projection_matrix * view_matrix * model_matrix * vec4(position, 1.0f);
}")

Okey! Again we define a new structure, this time including the base particle so that we get the lifetime field as well. We add a location and velocity on to this, which we'll provide for basic movement. Then we define a subclass of our emitter, to provide the additional defaults. Using this subclass we can provide some basic updates that most particle systems based on it will expect: an initial location at the origin, updating the location by the velocity, increasing the lifetime by the delta time of the tick, and returning whether the particle is still live after that.

On the painting side we provide the default handling of the position. To do so, we first pass the three standard transform matrices used in Trial as uniforms, and then define a vertex shader snippet that handles the vertex transformation. You might notice here that the second vertex input, the one for the per-particle location, does not have a location assigned. This is because we cannot know where this binding lies ahead of time. The user might have additional vertex attributes for their per-particle mesh that we don't know about. The user must later provide an additional vertex-shader snippet that does define this.

So, finally, let's look at an actual use-case of this system.

(define-asset (workbench particles) vertex-struct-buffer
    'simple-particle
  :struct-count 1024)

(define-shader-subject fireworks (simple-particle-emitter)
  ()
  (:default-initargs :particle-mesh (change-class (make-sphere 1) 'vertex-array :vertex-attributes '(location))
                     :particle-buffer (asset 'workbench 'particles)))

(defmethod initial-particle-state ((fireworks fireworks) tick particle)
  (let ((dir (polar->cartesian (vec2 (/ (sxhash (fc tick)) (ash 2 60)) (mod (sxhash (fc tick)) 100)))))
    (setf (velocity particle) (vec (vx dir) (+ 2.5 (mod (sxhash (fc tick)) 2)) (vy dir))))
  (setf (lifetime particle) (vec 0 (+ 3.0 (random 1.0)))))

(defmethod update-particle-state :before ((fireworks fireworks) tick particle output)
  (let ((vel (velocity particle)))
    (decf (vy3 vel) 0.005)
    (when (< (abs (- (vx (lifetime particle)) 2.5)) 0.05)
      (let ((dir (polar->cartesian (vec3 (+ 1.5 (random 0.125)) (random (* 2 PI)) (random (* 2 PI))))))
        (vsetf vel (vx dir) (vy dir) (vz dir))))
    (setf (velocity output) vel)))

(defmethod new-particle-count ((fireworks fireworks) tick)
  (if (= 0 (mod (fc tick) (* 10 1)))
      128 0))

(define-class-shader (fireworks :vertex-shader 1)
  "layout (location = 1) in vec2 in_lifetime;
layout (location = 2) in vec3 location;

out vec2 lifetime;

void main(){
  lifetime = in_lifetime;
}")

(define-class-shader (fireworks :fragment-shader)
  "out vec4 color;

in vec2 lifetime;

void main(){
  if(lifetime.x <= 2.5)
    color = vec4(1);
  else{
    float lt = lifetime.y-lifetime.x;
    color = vec4(lt*2, lt, 0, 1);
  }
}")

First we define an asset that holds our per-particle buffer data. To do this we simply pass along the name of the particle class we want to use, as well as the number of such instances to allocate in the buffer. We then use this, as well as a simple sphere mesh, to initialize our own particle emitter. Then come the particle update methods. For the initial state we calculate a random velocity within a cone region, using polar coordinates. This will cause the particles to shoot out at various angles. We use a hash on the current frame counter here to ensure that particles generated in the same frame get bunched together with the same initial values. We also set the lifetime to be between three and four seconds, randomly for each particle.

In the update, we only take care of the velocity change, as the rest of the work is already done for us. For this we apply some weak gravity, and then check the lifetime of the particle. If it is within a certain range, we radically change the velocity of the particle in a random, spherical direction. In effect this will cause the particles, which were bunched together until now, to spread out randomly.

For our generator, we simply create a fixed number of particles every 10 frames or so. In a fixed frame-rate, this should look mean a steady generation of particle batches.

Finally, in the two shader code snippets we provide the aforementioned vertex attribute binding location, and some simple colouring logic to make the particles look more like fireworks. The final result of this exercise is this:

fireworks

Quite nice, I would say. With this we have a system that allows us to create very different particle effects, with relatively little code. For Leaf, I intend on using this to create 2D sprite-based particle effects, such as sparks, dust clouds, and so forth. I'm sure I'll revisit this at a later date to explore these different application possibilities.

06 Aug 2019 8:36am GMT

05 Aug 2019

feedPlanet Lisp

Vsevolod Dyomkin: Programming Algorithms: Data Structures

The next several chapters will be describing the basic data structures that every programming language provides, their usage and the most important algorithms relevant to them. And we'll start with the notion of a data-structure and tuples or structs that are the most primitive and essential one.

Data Structures vs Algorithms

Let's start with a somewhat abstract question: what's more important, algorithms or data structures?

From one point of view, algorithms are the essence of many programs, while data structures may seem secondary. Besides, although a majority of algorithms rely on certain features of particular data structures, not all do. Good examples of the data-structure-relying algorithms are heapsort, search using BSTs, and union-find. And of the second type: the sieve of Erastophenes and consistent hashing.

At the same time, some seasoned developers state that when the right data structure is found, the algorithm will almost write itself. Linus Torvalds, the creator of Linux, is quoted saying:

Bad programmers worry about the code. Good programmers worry about data structures and their relationships.

A somewhat less poignant version of the same idea is formulated in the Art of Unix Programming by Eric S. Raymond as the "Rule of Representation":

Fold knowledge into data so program logic can be stupid and robust.

Even the simplest procedural logic is hard for humans to verify, but quite complex data structures are fairly easy to model and reason about. To see this, compare the expressiveness and explanatory power of a diagram of (say) a fifty-node pointer tree with a flowchart of a fifty-line program. Or, compare an array initializer expressing a conversion table with an equivalent switch statement. The difference in transparency and clarity is dramatic.

Data is more tractable than program logic. It follows that where you see a choice between complexity in data structures and complexity in code, choose the former. More: in evolving a design, you should actively seek ways to shift complexity from code to data.

Data structures are more static than algorithms. Surely, most of them allow change of their contents over time, but there are certain invariants that always hold. This allows reasoning by simple induction: consider only two (or at least a small number of) cases, the base one(s) and the general. In other words, data structures remove, in the main, the notion of time from consideration, and change over time is one of the major causes of program complexity. In other words, data structures are declarative, while most of the algorithms are imperative. The advantage of the declarative approach is that you don't have to imagine (trace) the flow of time through it.

So, this book, like most other books on the subject, is organized around data structures. The majority of the chapters present a particular structure, its properties and interface, and explain the algorithms, associated with it, showing its real-world use cases. Yet, some important algorithms don't require a particular data structure, so there are also several chapters dedicated exclusively to them.

The Data Structure Concept

Among data structures, there are, actually, two distinct kinds: abstract and concrete. The significant difference between them is that an abstract structure is just an interface (a set of operations) and a number of conditions or invariants that have to be met. Their particular implementations, which may differ significantly in efficiency characteristics and inner mechanisms, are provided by the concrete data structures. For instance, an abstract data structure queue has just two operations: enqueue that adds an item to the end of the queue and dequeue that gets an item at the beginning and removes it. There's also a constraint that the items should be dequeued in the same order they are enqueued. Now, a queue may be implemented using a number of different underlying data structures: a linked or a double-linked list, an array or a tree. Each one having different efficiency characteristics and additional properties beyond the queue interface. We'll discuss both kinds in the book, focusing on the concrete structures and explaining their usage to implement a particular abstract interface.

The term data structures has somewhat fallen from grace, in the recent years, being often replaced by conceptually more loaded notions of types, in the context of the functional programming paradigm, or classes, in object-orientated one. Yet, both of those notions imply something more than just algorithmic machinery we're exclusively interested in, for this book. First of all, they also distinguish among primitive values (numbers, characters, etc.) that are all non-distinct, in the context of algorithms. Besides, classes form a hierarchy of inheritance while types are associated with algebraic rules of category theory. So, we'll stick to a neutral data structures term, throughout the book, with occasional mentions of the other variants where appropriate.

Contiguous and Linked Data Structures

The current computer architectures consist of a central processor (CPU), memory and peripheral input-output devices. The data is someway exchanged with the outside world via the IO-devices, stored in memory, and processed by the CPU. And there's a crucial constraint, called the von Neumann's bottleneck: the CPU can only process data that is stored inside of it in a limited number of special basic memory blocks called registers. So it has to constantly move data elements back and forth between the registers and main memory (using intermediate cache to speed up the process). Now, there are things that can fit in a register and those that can't. The first ones are called primitive and mostly unite those items that can be directly represented with integer numbers: integers proper, floats, characters. Everything that requires a custom data structure to be represented can't be put in a register as a whole.

Another item that fits into the processor register is a memory address. In fact, there's an important constant - the number of bits in a general-purpose register, which defines the maximum memory address that a particular CPU may handle and, thus, the maximum amount of memory it can work with. For a 32-bit architecture it's 2^32 (4 GB) and for 64-bit - you've guessed it, 2^64. A memory address is usually called a pointer, and if you put a pointer in a register, there are commands that allow the CPU to retrieve the data in-memory from where it points.

So, there are two ways to place a data structure inside the memory:

Tuples

In most languages, some common data structures, like arrays or lists, are "built-in", but, under the hood, they will mostly work in the same way as any user-defined ones. To implement an arbitrary data structure, these languages provide a special mechanism called records, structs, objects, etc. The proper name for it would be "tuple". It is the data structure that consists of a number of fields each one holding either a primitive value, another tuple or a pointer to another tuple of any type. This way a tuple can represent any structure, including nested and recursive ones. In the context of type theory, such structures are called product types.

A tuple is an abstract data structure and its sole interface is the field accessor function: by name (a named tuple) or index (an anonymous tuple). It can be implemented in various ways, although a contiguous variant with constant-time access is preferred. However, in many languages, especially dynamic, programmers often use lists or dynamic arrays to create throw-away ad-hoc tuples. Python has a dedicated tuple data type, that is often for this purpose, that is a linked data structure under the hood. The following Python function will return a tuple (written in parens) of a decimal and remainder parts of the number x[1]:

def truncate(x):
dec = int(x)
rem = x - dec
return (dec, rem)

This is a simple and not very efficient way that may have its place when the number of fields is small and the lifetime of the structure is short. However, a better approach both from the point of view of efficiency and code clarity is to use a pre-defined structure. In Lisp, a tuple is called "struct" and is defined with defstruct, which uses a contiguous representation by default (although there's an option to use a linked list under-the-hood). Following is the definition of a simple pair data structure that has two fields (called "slots" in Lisp parlance): left and right.

(defstruct pair
left right)

The defstruct macro, in fact, generates several definitions: of the struct type, its constructor that will be called make-pair and have 2 keyword arguments :left and :right, and field accessors pair-left and pair-right. Also, a common print-object method for structs will work for our new structure, as well as a reader-macro to restore it from the printed form. Here's how it all fits together:

CL-USER> (make-pair :left "foo" :right "bar")
#S(PAIR :LEFT "foo" :RIGHT "bar")
CL-USER> (pair-right (read-from-string (prin1-to-string *)))
"bar"

prin1-to-string and read-from-string are complimentary Lisp functions that allow to print the value in a computer-readable form (if an appropriate print-function is provided) and read it back. Good print-representations readable to both humans and, ideally, computers are very important to code transparency and should never be neglected.

There's a way to customize every part of the definition. For instance, if we plan to use pairs frequently we can leave out the pair- prefix by specifying (:conc-name nil) property. Here is an improved pair definition and shorthand constructor for it from RUTILS, which we'll use throughout the book. It uses :type list allocation to integrate with destructuring macros.

(defstruct (pair (:type list) (:conc-name nil))
"A generic pair with left (LT) and right (RT) elements."
lt rt)

(defun pair (x y)
"A shortcut to make a pair of X and Y."
(make-pair :lt x :rt y))

Passing Data Structures in Function Calls

One final remark. There are two ways to use data structures with functions: either pass them directly via copying appropriate memory areas (call-by-value) - an approach, usually, applied to primitive types - or pass a pointer (call-by-reference). In the first case, there's no way to modify the contents of the original structure in the called function, while in the second variant it is possible, so the risk of unwarranted change should be taken into account. The usual way to handle it is by making a copy before invoking any changes, although, sometimes, mutation of the original data structure may be intended so a copy is not needed. Obviously, the call-by-reference approach is more general, because it allows both modification and copying, and more efficient because copying is on-demand. That's why it is the default way to handle structures (and objects) in most programming languages. In a low-level language like C, however, both variants are supported. Moreover, in C++ the pass-by-reference has two kinds: pass the pointer and pass what's actually called a reference, which is syntax sugar over pointers that allows accessing the argument with non-pointer syntax (dot instead of arrow) and adds a couple of restrictions. But the general idea, regardless of the idiosyncrasies of particular languages, remains the same.

Structs in Action: Union-Find

Data structures come in various shapes and flavors. Here, I'd like to mention one peculiar and interesting example that is both a data structure and an algorithm, to some extent. Even the name speaks about certain operations rather than a static form. Well, most of the more advanced data structures all have this feature that they are defined not only by the shape and arrangement but also via the set of operations that are applicable. Union-Find is a family of data-structure-algorithms that can be used for efficient determination of set membership in sets that change over time. They may be used for finding the disjoint parts in networks, detection of cycles in graphs, finding the minimum spanning tree and so forth. One practical example of such problems is automatic image segmentation: separating different parts of an image, a car from the background or a cancer cell from a normal one.

Let's consider the following problem: how to determine if two points of the graph have a path between them? Given that a graph is a set of points (vertices) and edges between some of the pairs of these points. A path in the graph is a sequence of points leading from source to destination with each pair having an edge that connects them. If some path between two points exists they belong to the same component if it doesn't - to two disjoint ones.


A graph with 3 disjoint components

For two arbitrary points, how to determine if they have a connecting path? The naive implementation may take one of them and start building all the possible paths (this may be done in breadth-first or depth-first manner, or even randomly). Anyway, such procedure will, generally, require a number of steps proportional to the number of vertices of the graph. Can we do better? This is a usual question that leads to the creation of more efficient algorithms.

Union-Find approach is based on a simple idea: when adding the items record the id of the component they belong to. But how to determine this id? Use the id associated with some point already in this subset or the current point's id if the point is in a subset of its own. And what if we have the subsets already formed? No problem, we can simulate the addition process by iterating over each vertex and taking the id of an arbitrary point it's connected to as the subset's id. Below is the implementation of this approach (to simplify the code, we'll use the pointers to `point` structs instead of ids, but, conceptually, it's the same idea):

(defstruct point
parent) ; if the parent is null the point is the root

(defun uf-union (point1 point2)
"Join the subsets of POINT1 and POINT2."
(:= (point-parent point1) (or (point-parent point2)
point2)))

(defun uf-find (point)
"Determine the id of the subset that a POINT belongs to."
(let ((parent (point-parent point)))
(if parent
(uf-find parent)
point)))

Just calling (make-point) will add a new subset with a single item in it to our set.

Note that uf-find uses recursion to find the root of the subset, i.e. the point that was added first. So, for each vertex, we store some intermediary data and, to get the subset id, each time, we'll have to perform additional calculations. This way, we managed to reduce the average-case find time, but, still, haven't completely excluded the possibility of it requiring traversal of every element of the set. Such so-called degraded case may manifest when each item is added referencing the previously added one. I.e. there will be a single subset with a chain of its members connected to the next one like this: a -> b -> c -> d. If we call uf-find on a it will have to enumerate all of the set's elements.

Yet, there is a way to improve uf-find behavior: by compressing the tree depth to make all points along the path to the root point to it, i.e squashing each chain into a wide shallow tree of depth 1.

  d
^ ^ ^
| | |
a b c

Unfortunately, we can't do that, at once, for the whole subset, but, during each run of uf-find, we can compress one path, which will also shorten all the paths in the subtree that is rooted in the points on it! Still, this cannot guarantee that there will not be a sequence of enough unions to grow the trees faster than finds can flatten them. But there's another tweak that, combined with path compression, allows to ensure sublinear (actually, almost constant) time of both operations: keep track of the size of all trees and link the smaller tree below the larger one. This will ensure that all trees' heights will stay below (log n). The rigorous proof of that is quite complex, although, intuitively, we can see the tendency by looking at the base case: if we add a 2-element tree and a 1-element one we'll still get the tree of the height 2.

Here is the implementation of the optimized version:

(defstruct point
parent
(size 1))

(defun uf-find (point)
(let ((parent (point-parent point)))
(if parent
;; here, we use the fact that the assignment will also return
;; the value to perform both path compression and find
(:= (point-parent point) (uf-find parent))
point)))

(defun uf-union (point1 point2)
(with ((root1 (uf-find point1))
(root2 (uf-find point2))
(major minor (if (> (point-size root1)
(point-size root2))
(values root1 root2)
(values root2 root1))))
(:+ (point-size major) (point-size minor))
(:= (point-parent minor) major)))

Here, Lisp multiple values come handy, to simplify the code. See the footnote [1] for more details about them.

The suggested approach is quite simple in implementation but complex in complexity analysis. So, I'll have to give just the final result: m union/find operations, with tree weighting and path compression, on a set of n objects will work in O((m + n) log* n) (where log* is iterated logarithm - a very slowly increasing function, that can be considered a constant, for practical purposes).

Finally, this is how to check if none of the points belong to the same subset in almost O(n) where n is the number of points to check[2], so in O(1) for 2 points:

(defun uf-disjoint (points)
"Return true if all of the POINTS belong to different subsets."
(let (roots)
(dolist (point points)
(let ((root (uf-find point)))
(when (member root roots)
(return-from uf-disjoint nil))
(push root roots))))
t)

A couple more observations may be drawn from this simple example:

  1. Not always the clever idea that we, initially, have works flawlessly at once. It is important to check the edge cases for potential problems.
  2. We've seen an example of a data structre that, directly, doesn't exist: pieces of information are distributed over individual data points. Sometimes, there's a choice between storing the information, in a centralized way, in a dedicated structure like a hash-table and distributing it over individual nodes. The latter approach is often more elegant and efficient, although it's not so obvious.

Footnotes:

[1] Moreover, Python has special syntax for destructuring such tuples: dec, rem = truncate(3.14). However, this is not the optimal way to handle returning the primary and one or more secondary values from a function. Lisp provides a more elegant solution called multiple values: all the necessary values are returned via the values form: (values dec rem) and can be retrieved with (multiple-value-bind (dec rem) (truncate 3.14) ...) or (with ((dec rem (truncate 3.14))) ...). It is more elegant because secondary values may be discarded at will by calling the function in a usual way: (+ 1 (truncate 3.14)) => 4 - not possible in Python, because you can't sum a tuple with something.

[2] Actually, the complexity here is O(n^2) due to the use of the function member that performs set membership test in O(n), but it's not essential to the general idea. If uf-disjoint is expected to be called with tens or hundreds of points the roots structure has to be changed to a hash-set that has a O(1) membership operation.

05 Aug 2019 10:40am GMT

Lispers.de: Lisp-Meetup in Hamburg on Monday, 5th August 2019

We meet at Ristorante Opera, Dammtorstraße 7, Hamburg, starting around 19:00 CEST on 5th August 2019.

This is an informal gathering of Lispers of all experience levels.

05 Aug 2019 12:00am GMT

04 Aug 2019

feedPlanet Lisp

Christophe Rhodes: holiday hacking swankr

I'm on holiday! And holidays, as seems to be my usual, involve trains!

I was on a train yesterday, wondering how I could possibly fill two hours of leisure time (it's more straightforward these days than a few years ago, when my fellow travellers were less able to occupy their leisure time with books), when help came from a thoroughly unexpected quarter: I got a bug report for swankr.

I wrote swankr nine years ago, mostly at ISMIR2010. I was about to start the Teclo phase of my ongoing adventures, and an academic colleague had recommended that I learn R; and the moment where it all fell into place was when I discovered that R supported handlers and restarts: enough that writing support for slime's SLDB was a lower-effort endeavour than learning R's default debugger. I implemented support for the bits of slime that I use, and also for displaying images in the REPL -- so that I can present lattice objects as thumbnails of the rendered graph, and have the canned demo of adding two of them together to get a combined graph: generates "oo" sounds at every outing, guaranteed! (Now that I mostly use ggplot2, I need to find a new demo: incrementally building and styling a plot by adding theme, scale, legend objects and so on is actually useful but lacks a wow factor.)

SLIME works by exchanging messages between the emacs front-end and the backend lisp; code on the backend lisp is responsible for parsing the messages, executing whatever is needed to support the request, and sending a response. The messages are, broadly, sexp-based, and the message parsing and executing in the backends is mostly portable Common Lisp, delegating to implementation-specific code for specific implementation-specific support needed.

"Mostly portable Common Lisp" doesn't mean that it'll run in R. The R code is necessarily completely separate, implementing just enough of a Lisp reader to parse the messages. This works fine, because the messages themselves are simple; when the front-end sends a message asking for evaluation for the listener, say, the message is in the form of a sexp, but the form to evaluate is a string of the user-provided text: so as long as we have enough of a sexp reader/evaluator to deal with the SLIME protocol messages, the rest will be handled by the backend's eval function.

... except in some cases. When slime sends a form to be evaluated which contains an embedded presentation object, the presentation is replaced by #.(swank:lookup-presented-object-or-lose 57.) in the string sent for evaluation. This works fine for Common Lisp backends - at least provided *read-eval* is true - but doesn't work elsewhere. One regexp allows us to preprocess the string to evaluate to rewrite this into something else, but what? Enter cunning plan number 1: (ab)use backquote.

Backquote? Yes, R has backquote bquote. It also has moderately crazy function call semantics, so it's possible to: rewrite the string ob be evaluated to contain unquotations; parse the string into a form; funcall the bquote function on that form (effectively performing the unquotations, simulating the read-time evaluation), and then eval the result. And this would be marvellous except that Philipp Marek discovered that his own bquote-using code didn't work. Some investigation later, and the root cause became apparent:

CL-USER> (progn (set 'a 3) (eval (read-from-string "``,a")))
`,a

compare

R> a <- 3; bquote(bquote(.(a)))
bquote(3)

NO NESTED BACKQUOTES?

So, scratch the do.call("bquote", ...) plan. What else is available to us? It turns out that there's a substitute function, which for substitute(expr, env)

returns the parse tree for the (unevaluated) expression 'expr', substituting any variables bound in 'env'.

Great! Because that means we can use the regular expression to rewrite the presentation lookup function calls to be specific variable references, then substitute these variable references from the id-to-object environment that we have anyway, and Bob is your metaphorical uncle. So I did that.

The situation is not perfect, unfortunately. Here's some more of the documentation for substitute:

'substitute' works on a purely lexical basis. There is no guarantee that the resulting expression makes any sense.

... and here's some more from do.call:

The behavior of some functions, such as 'substitute', will not be the same for functions evaluated using 'do.call' as if they were evaluated from the interpreter. The precise semantics are currently undefined and subject to change.

Well that's not ominous at all.

04 Aug 2019 11:46am GMT

29 Jul 2019

feedPlanet Lisp

Vsevolod Dyomkin: Programming Algorithms: A Crash Course in Lisp

The introductory post for this book, unexpectedly, received quite a lot of attention, which is nice since it prompted some questions, and one of them I planned to address in this chapter.

I expect that there will be two main audiences, for this book:

This introductory chapter is, primarily, for the first group. After reading it, the rest of the book's Lisp code should become understandable to you. Besides, you'll know the basics to run Lisp and experiment with it if will you so desire.

For the lispers, I have one comment and one remark. You might be interested to read this part just to understand my approach of utilizing the language throughout the book. Also, you'll find my stance regarding the question that was voiced several times in the comments: whether it's justified to use some 3rd-party extensions and to what extent or should the author vigilantly stick to only the tools provided by the standard.

The Core of Lisp

To effortlessly understand Lisp, you'll have to forget, for a moment, any concepts of how programming languages should work that you might have acquired from your prior experience in coding. Lisp is simpler; and when people bring their Java, C or Python approaches to programming with it, first of all, the results are suboptimal in terms of code quality (simplicity, clarity, and beauty), and, what's more important, there's much less satisfaction from the process, not to mention very few insights and little new knowledge gained.

It is much easier to explain Lisp if we begin from a blank slate. In essence, all there is to it is just an evaluation rule: Lisp programs consist of forms that are evaluated by the compiler. There are 3+2 ways how that can happen:

It's important to note that, in Lisp, there's no distinction between statements and expressions, no special keywords, no operator precedence rules, and other similar arbitrary stuff you can stumble upon in other languages. Everything is uniform; everything is an expression in a sense that it will be evaluated and return some value.

A Code Example

To sum up, let's consider an example of the evaluation of a Lisp form. The following one implements the famous binary search algorithm (that we'll discuss in more detail in one of the following chapters):

(when (> (length vec) 0)
(let ((beg 0)
(end (length vec)))
(do ()
((= beg end))
(let ((mid (floor (+ beg end) 2)))
(if (> (? vec mid) val)
(:= beg (1+ mid))
(:= end mid))))
(values beg
(? vec beg)
(= (? vec beg) val))))

It is a compound form. In it, the so-called top-level form is when, which is a macro for a one-clause conditional expression: an if with only the true-branch. First, it evaluates the expression (> (length vec) 0), which is an ordinary function for a logical operator > applied to two args: the result of obtaining the length of the contents of the variable vec and a constant 0. If the evaluation returns true, i.e. the length of vec is greater than 0, the rest of the form is evaluated in the same manner. The result of the evaluation, if nothing exceptional happens, is either false (which is called nil, in Lisp) or 3 values returned from the last form (values ...). ? is the generic access operator, which abstracts over different ways to query data structures by key. In this case, it retrieves the item from vec at the index of the second argument. Below we'll talk about other operators shown here.

But first I need to say a few words abut RUTILS. It is a 3rd-party library that provides a number of extensions to the standard Lisp syntax and its basic operators. The reason for its existence is that Lisp standard is not going to change ever, and, as eveything in this world, it has its flaws. Besides, our understanding of what's elegant and efficient code evolves over time. The great advantage of the Lisp standard, however, which counteracts the issue of its immutability, is that its authors had put into it multiple ways to modify and evolve the language at almost all levels starting from even the basic syntax. And this addresses our ultimate need, after all: we're not so interested in changing the standard as we're in changing the language. So, RUTILS is one of the ways of evolving Lisp and its purpose is to make programming in it more accessible without compromising the principles of the language. So, in this book, I will use some basic extensions from RUTILS and will explain them as needed. Surely, using 3rd-party tools is the question of preference and taste and might not be approved by some of the Lisp old-times, but no worries, in your code, you'll be able to easily swap them for your favorite alternatives.

The REPL

Lisp programs are supposed to be run not only in a one-off fashion of simple scripts, but also as live systems that operate over long periods of time experiencing change not only of their data but also code. This general way of interaction with a program is called Read-Eval-Print-Loop (REPL), which literally means that the Lisp compiler reads a form, evaluates it with the aforementioned rule, prints the results back to the user, and loops over.

REPL is the default way to interact with a Lisp program, and it is very similar to the Unix shell. When you run your Lisp (for example, by entering sbcl at the shell) you'll drop into the REPL. We'll preceede all REPL-based code interactions in the book with a REPL prompt (CL-USER> or similar). Here's an example one:

CL-USER> (print "Hello world")
"Hello world"
"Hello world"

A curious reader may be asking why "Hello world" is printed twice. It's a proof that everything is an expression in Lisp. :) The print "statement", unlike in most other languages, not only prints its argument to the console (or other output stream), but also returns it as is. This comes very handy when debugging, as you can wrap almost any form in a print not changing the flow of the program.

Obviously, if the interaction is not necessary, just the read-eval part may remain. But, what's more important, Lisp provides a way to customize every stage of the process:

Basic Expressions

The structural programming paradigm states that all programs can be expressed in terms of 3 basic constructs: sequential execution, branching, and looping. Let's see how these operators are expressed in Lisp.

Sequential Execution

The simplest program flow is sequential execution. In all imperative languages, it is what is assumed to happen if you put several forms in a row and evaluate the resulting code block. Like this:

CL-USER> (print "hello") (+ 2 2)
"hello"
4

The value returned by the last expression is dimmed the value of the whole sequence.

Here, the REPL-interaction forms an implicit unit of sequential code. However, there are many cases when we need to explicitly delimit such units. This can be done with the block operator:

CL-USER> (block test
(print "hello")
(+ 2 2))
"hello"
4

Such block has a name (in this example: test). This allows to prematurely end its execution by using an operator return-from:

CL-USER> (block test
(return-from test 0)
(print "hello")
(+ 2 2))
0

A shorthand return is used to exit from blocks with a nil name (which are implicit in most of the looping constructs we'll see further):

CL-USER> (block nil
(return 0)
(print "hello")
(+ 2 2))
0

Finally, if we don't even plan to ever prematurely return from a block, we can use the progn operator that doesn't require a name:

CL-USER> (progn
(print "hello")
(+ 2 2))
"hello"
4

Branching

Conditional expressions calculate the value of their first form and, depending on it, execute one of several alternative code paths. The basic conditional expression is if:

CL-USER> (if nil
(print "hello")
(print "world"))
"world"
"world"

As we've seen, nil is used to represent logical falsity, in Lisp. All other values are considered logically true, including the symbol T or t which directly has the meaning of truth.

And when we need to do several things at once, in one of the conditional branches, it's one of the cases when we need to use progn or block:

CL-USER> (if (+ 2 2)
(progn
(print "hello")
4)
(print "world"))
"hello"
4

However, often we don't need both branches of the expressions, i.e. we don't care what will happen if our condition doesn't hold (or holds). This is such a common case that there are special expressions for it in Lisp - when and unless:

CL-USER> (when (+ 2 2)
(print "hello")
4)
"world"
4
CL-USER> (unless (+ 2 2)
(print "hello")
4)
NIL

As you see, it's also handy because you don't have to explicitly wrap the sequential forms in a progn.

One other standard conditional expression is cond, which is used when we want to evaluate several conditions in a row:

CL-USER> (cond
((typep 4 'string)
(print "hello"))
((> 4 2)
(print "world")
nil)
(t
(print "can't get here")))
"world"
NIL

The t case is a catch-all that will trigger if none of the previous conditions worked (as its condition is always true). The above code is equivalent to the following:

(if (typep 4 'string)
(print "hello")
(if (> 4 2)
(progn
(print "world")
nil)
(print "can't get here")))

There are many more conditional expressions in Lisp, and it's very easy to define your own with macros (it's actually, how when, unless, and cond are defined), and when there arises a need to use a special one, we'll discuss its implementation.

Looping

Like with branching, Lisp has a rich set of looping constructs, and it's also easy to define new ones when necessary. This approach is different from the mainstream languages, that usually have a small number of such statements and, sometimes, provide an extension mechanism via polymorphism. And it's even considered to be a virtue justified by the idea that it's less confusing for the beginners. It makes sense to a degree. Still, in Lisp, both generic and custom approaches manage to coexist and complement each other. Yet, the tradition of defining custom control constructs is very strong. Why? One justification for this is the parallel to human languages: indeed, when and unless, as well as dotimes and loop are either directly words from the human language or are derived from natural language expressions. Our mother tongues are not so primitive and dry. The other reason is because you can™. I.e. it's so much easier to define custom syntactic extensions in Lisp than in other languages that sometimes it's just impossible to resist. :) And in many use cases they make the code much more simple and clear.

Anyway, for a complete beginner, actually, you have to know the same number of iteration constructs as in any other language. The simplest one is dotimes that iterates the counter variable a given number of times (from 0 to (- times 1)) and executes the body on each iteration. It is analogous to for (int i = 0; i < times; i++) loops found in C-like languages.

CL-USER> (dotimes (i 3)
(print i))
0
1
2
NIL

The return value is nil by default, although it may be specified in the loop header.

The most versatile (and low-level) looping construct, on the other hand, is do:

CL-USER> (do ((i 0 (1+ i))
(prompt (read-line) (read-line)))
((> i 1) i)
(print (pair i prompt))
(terpri))
foo

(0 "foo")
bar

(1 "bar")

2

do iterates a number of variables (zero or more) that are defined in the first part (here, i and prompt) until the termination condition in the second part is satisfied (here, (> i 1)), and as with dotimes (and other do-style macros) executes its body - rest of the forms (here, print and terpri, which is a shorthand for printing a newline). read-line reads from standard input until newline is encountered and 1+ returns the current value of i increased by 1.

All do-style macros (and there's quite a number of them, both built-in and provided from external libraries: dolist, dotree, do-register-groups, dolines etc.) have an optional return value. In do it follows the termination condition, here - just return the final value of i.

Besides do-style iteration, there's also a substantially different beast in CL ecosystem - the infamous loop macro. It is very versatile, although somewhat unlispy in terms of syntax and with a few surprising behaviors. But elaborating on it is beyond the scope of this book, especially since there's an excellent introduction to loop in Peter Seibel's "LOOP for Black Belts".

Many languages provide a generic looping construct that is able to iterate an arbitrary sequence, a generator and other similar-behaving things - usually, some variant of foreach. We'll return to such constructs after speaking about sequences in more detail.

And there's also an alternative iteration philosophy: the functional one, which is based on higher-order functions (map, reduce and similar) - we'll cover it in more detail in the following chapters, also.

Procedures and Variables

We have covered the 3 pillars of structural programming, but one essential, in fact, the most essential, construct still remains - variables and procedures.

What if I told you that you can perform the same computation many times, but changing some parameters... OK, OK, pathetic joke. So, procedures are the simplest way to reuse computations, and procedures accept arguments, which allows to pass values into their bodies. A procedure, in Lisp, is called lambda. You can define one like this: (lambda (x y) (+ x y)). When used, such procedure - also often called a function, although it's quite different from what we consider a mathematical function - and, in this case, it's called an anonymous function as it doesn't have any name - will produce the sum of its inputs:

CL-USER> ((lambda (x y) (+ x y)) 2 2)
4

It is quite cumbersome to refer to procedures by their full code signature, and an obvious solution is to assign names to them. A common way to do that in Lisp is via the defun macro:

CL-USER> (defun add2 (x y) (+ x y))
ADD2
CL-USER> (add2 2 2)
4

The arguments of a procedure are examples of variables. Variables are used to name memory cells whose contents are used more than once and may be changed in the process. They serve different purposes:

Can we live without variables? Theoretically, well, maybe. At least, there's the so-called point-free style of programming that strongly discourages the use of variables. But, as they say, don't try this at home (at least, until you know perfectly well what you're doing :) Can we replace variables with constants, or single-assignment variables, i.e. variables that can't change over time? Such approach is promoted by the so called purely functional languages. To a certain degree, yes. But, from the point of view of algorithms development, it makes life a lot harder by complicating many optimizations if not totally outruling them.

So, how to define variables in Lisp? You've already seen some of the variants: procedural arguments and let-bindings. Such variables are called local or lexical, in Lisp parlance. That's because they are only accessible locally throughout the execution of the code block, in which they are defined. let is a general way to introduce such local variables, which is lambda in disguise (a thin layer of syntax sugar over it):

CL-USER> (let ((x 2))
(+ x x))
4
CL-USER> ((lambda (x) (+ x x))
2)
4

While with lambda you can create a procedure in one place, possibly, assign it to a variable (that's what, in essence, defun does), and then apply many times in various places, with let you define a procedure and immediately call it, leaving no way to store it and re-apply again afterwards. That's even more anonymous than an anonymous function! Also, it requires no overhead, from the compiler. But the mechanism is the same.

Creating variables via let is called binding, because they are immediately assigned (bound with) values. It is possible to bind several variables at once:

CL-USER> (let ((x 2)
(y 2))
(+ x y))
4

However, often we want to define a row of variables with next ones using the previous ones' values. It is cumbersome to do with let, because you need nesting (as procedural arguments are assigned independently):

(let ((len (length list)))
(let ((mid (floor len 2)))
(let ((left-part (subseq list 0 mid))
(right-part (subseq list mid)))
...)))

To simplify this use case, there's let*:

(let* ((len (length list))
(mid (floor len 2))
(left-part (subseq list 0 mid))
(right-part (subseq list mid)))
...)

However, there are many other ways to define variables: bind multiple values at once; perform the so called "destructuring" binding when the contents of a data structure (usually, a list) are assigned to several variables, first element to the first variable, second to the second, and so on; access the slots of a certain structure etc. For such use cases, there's with binding from RUTILS, which works like let* with extra powers. Here's a very simple example:

(with ((len (length list))
(mid rem (floor len 2))
;; this group produces a list of 2 sublists
;; that are bound to left-part and right-part
;; and ; character starts a comment in lisp
((left-part right-part) (group mid list)))
...

In the code throughout this book, you'll only see these two binding constructs: let for trivial and parallel bindings and with for all the rest.

As we said, variables may not only be defined, or they'd be called "constants", instead, but also modified. To alter the variable's value we'll use := from RUTILS (it is an abbreviation of the standard psetf macro):

CL-USER> (let ((x 2))
(print (+ x x))
(:= x 4)
(+ x x))
4
8

Modification, generally, is a dangerous construct as it can create unexpected action-at-a-distance effects, when changing the value of a variable in one place of the code effects the execution of a different part that uses the same variable. This, however, can't happen with lexical variables: each let creates its own scope that shields the previous values from modification (just like passing arguments to a procedure call and modifying them within the call doesn't alter those values, in the calling code):

CL-USER> (let ((x 2))
(print (+ x x))
(let ((x 4))
(print (+ x x)))
(print (+ x x)))
4
8
4

Obviously, when you have two lets in different places using the same variable name they don't affect each other and these two variables are, actually, totally distinct.

Yet, sometimes it is useful to modify a variable in one place and see the effect in another. The variables, which have such behavior, are called global or dynamic (and also special, in Lisp jargon). They have several important purposes. One is defining important configuration parameters that need to be accessible anywhere. The other is referencing general-purpose singleton objects like the standard streams or the state of the random number generator. Yet another is pointing to some context that can be altered in certain places subject to the needs of a particular procedure (for instance, the *package* global variable determines in what package we operate - CL-USER in all previous examples). More advanced uses for global variables also exist. The common way to define a global variable is with defparameter, which specifies its initial value:

(defparameter *connection* nil
"A default connection object.") ; this is a docstring describing the variable

Global variables, in Lisp, usually have so-called "earmuffs" around their names to remind the user of what they are dealing with. Due to their action-at-a-distance feature, it is not the safest programming language feature, and even a "global variables considered harmful" mantra exists. Lisp is, however, not one of those squeamish languages, and it finds many uses for special variables. By the way, they are called "special" due to a special feature, which greatly broadens the possibilities for their sane usage: if bound in let they act as lexical variables, i.e. the previous value is preserved and restored upon leaving the body of a let:

CL-USER> (defparameter *temp* 1)
*TEMP*
CL-USER> (print *temp*)
1
CL-USER> (progn
(let ((*temp* 2))
(print *temp*)
(:= *temp* 4)
(print *temp*))
*temp*)
2
4
1

Procedures in Lisp are first-class objects. This means the one you can assign to a variable, as well as inspect and redefine at run-time, and, consequently, do many other useful things with. The RUTILS function call[1] will call a procedure passed to it as an argument:

CL-USER> (call 'add2 2 2)
4
CL-USER> (let ((add2 (lambda (x y) (+ x y))))
(call add2 2 2))
4

In fact, defining a function with defun also creates a global variable, although in the function namespace. Functions, types, classes - all of these objects are usually defined as global. Though, for functions there's a way to define them locally with flet:

CL-USER> (foo 1)
;; ERROR: The function COMMON-LISP-USER::FOO is undefined.
CL-USER> (flet ((foo (x) (1+ x)))
(foo 1))
2
CL-USER> (foo 1)
;; ERROR: The function COMMON-LISP-USER::FOO is undefined.

Comments

Finally, there's one more syntax we need to know: how to put comments in the code. Only losers don't comment their code, and comments will be used extensively, throughout this book, to explain some parts of the code examples, inside of them. Comments, in Lisp, start with a ; character and end at the end of a line. So, the following snippet is a comment: ; this is a comment. There's also a common style of commenting, when short comments that follow the current line of code start with a single ;, longer comments for a certain code block precede it, occupy the whole line or a number of lines and start with ;;, comments for code section that include several Lisp top-level forms (global definitions) start with ;;; and also occupy whole lines. Besides, each global definition can have a special comment-like string, called the "docstring", that is intended to describe its purpose and usage, and that can be queried programmatically. To put it all together, this is how different comments may look like:

;;; Some code section

(defun this ()
"This has a curious docstring."
...)

(defun that ()
...
;; this is an interesting block don't you find?
(block interesting
(print "hello"))) ; it prints hello

Getting Started

I strongly encourage you to play around with the code presented in the following chapters of the book. Try to improve it, find issues with it, and come up with fixes, measure and trace everything. This will not only help you master some Lisp, but also understand much deeper the descriptions of the discussed algorithms and data structures, their pitfalls and corner cases. Doing that is, in fact, quite easy. All you need is install some Lisp (preferrably, SBCL or CCL), add Quicklisp, and, with its help, RUTILS.

As I said above, the usual way to work with Lisp is interacting with its REPL. Running the REPL is fairly straightforward. On my Mint Linux I'd run the following commands:

$ apt-get install sbcl rlwrap
...
$ rlwrap sbcl
...
* (print "hello world")

"hello world"
"hello world"
*

* is the Lisp raw prompt. It's, basically, the same as CL-USER> prompt you'll see in SLIME. You can also run a Lisp script file: sbcl --script hello.lisp. If it contains just a single (print "hello world") line we'll see the "hello world" phrase printed to the console.

This is a working, but not the most convenient setup. A much more advanced environment is SLIME that works inside Emacs (a similar project for vim is called SLIMV). There exists a number of other solutions: some Lisp implementations provide and IDE, some IDEs and editors provide integration.

After getting into the REPL, you'll have to issue the following commands:

* (ql:quickload :rutilsx)
* (use-package :rutilsx)
* (named-readtables:in-readtable rutilsx-readtable)

Well, that's enough Lisp you'll need to know, to start. We'll get acquainted with other Lisp concepts as they will become needed for the next chapters of this book. Yet, you're all set to read and write Lisp programs. They may seem unfamiliar, at first, but as you overcome the initial bump and get used to their paranthesised prefix surface syntax, I promise that you'll be able to recognize and appreciate their clarity and conciseness.

So, as they say in Lisp land, happy hacking!


Footnotes:

[1] call is the RUTILS abbreviation of the standard funcall. It was surely fun to be able to call a function from a variable back in the 60's, but now it has become so much more common that there's no need for the prefix ;)

29 Jul 2019 8:39am GMT